LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Modelo de IA predice resultados del cáncer de cerebro evaluando imágenes teñidas de tejido de glioblastoma

Por el equipo editorial de LabMedica en español
Actualizado el 27 Aug 2023
Print article
Imagen: Un nuevo algoritmo podría ayudar a comprender mejor y atacar tumores cerebrales complicados (Fotografía cortesía de Freepik)
Imagen: Un nuevo algoritmo podría ayudar a comprender mejor y atacar tumores cerebrales complicados (Fotografía cortesía de Freepik)

El glioblastoma, un cáncer cerebral rápido y agresivo, generalmente otorga una esperanza de vida promedio de alrededor de un año después del diagnóstico. Tratarlo resulta un desafío debido a las variaciones sustanciales en la composición celular de cada tumor entre los individuos. Esta diversidad obstaculiza estrategias efectivas. Incluso después de someterse a cirugía, radiación y quimioterapia, quedan células cancerosas residuales. Casi todos los pacientes con glioblastoma experimentan una recaída, con diferentes plazos. Predecir el pronóstico también presenta dificultades, dada la naturaleza compleja de comprender qué células cancerosas impulsan el glioblastoma de cada paciente. Ahora, los científicos han creado un algoritmo diseñado para ayudar a los médicos a mejorar su comprensión y localización de tumores cerebrales complicados.

Científicos de Stanford Medicine (Stanford, CA, EUA) han desarrollado un modelo de inteligencia artificial (IA) que evalúa imágenes teñidas de tejido de glioblastoma para predecir la agresividad del tumor, determinar la constitución genética de las células tumorales y evaluar la presencia de células cancerosas sustanciales después de la cirugía. El modelo de IA tiene el potencial de ayudar a los médicos a identificar pacientes que exhiben rasgos celulares indicativos de tumores más agresivos, lo que permite un seguimiento acelerado. Normalmente, los médicos y científicos utilizan imágenes histológicas, o imágenes de tejido enfermo teñido, para identificar células tumorales y formular estrategias de tratamiento. Si bien estas imágenes revelan la forma y ubicación de las células cancerosas, proporcionan una descripción incompleta del tumor. En los últimos tiempos ha surgido una técnica avanzada conocida como transcriptómica espacial que revela la ubicación celular y la composición genética de numerosos tipos de células a través de moléculas específicas que identifican el material genético en el tejido tumoral. Los datos de transcriptómica espacial ofrecen información sin precedentes sobre tales tumores, pero la técnica es costosa y la generación de datos cuesta varios miles de dólares por paciente.

Buscando un método más económico, los investigadores de Stanford recurrieron a la IA. Desarrollaron un modelo que utiliza datos de transcriptómica espacial para mejorar las imágenes de histología básicas, creando un mapa tumoral más detallado. El modelo se entrenó con imágenes de transcriptómica espacial y datos genéticos de más de 20 pacientes con glioblastoma. A partir de estas imágenes detalladas, se enseñó al modelo a hacer asociaciones entre tipos de células, interacciones celulares y perfiles con resultados de cáncer favorables o desfavorables. Por ejemplo, encontró que la agrupación anormal de células tumorales que se asemejan astrocitos, o células de soporte neuronal, se correlacionaba con cánceres más rápidos y agresivos. Los estudios muestran que tal acumulación de astrocitos provoca señales biológicas, lo que impulsa el crecimiento del tumor.

Al descubrir patrones como esta agrupación reveladora, el modelo podría ayudar a los desarrolladores de fármacos a diseñar tratamientos para el glioblastoma más específicos. Los datos de transcriptómica espacial de los mismos pacientes con glioblastoma permitieron al modelo identificar diversas células tumorales en las imágenes histológicas correspondientes con una precisión del 78 % o más. Básicamente, utilizó la forma de la célula para predecir la activación genética, proporcionando información sobre la identidad de una célula. Los médicos también podrían utilizar el modelo para medir el éxito de la extirpación del tumor después de la cirugía y cuánto queda todavía en el cerebro. Por ejemplo, el modelo reveló que las células tumorales con rastros genéticos de falta de oxígeno suelen estar ubicadas en el centro del tumor de un paciente. Proporciones más altas de estas células correspondieron a peores resultados del cáncer. Al iluminar las células privadas de oxígeno en muestras quirúrgicas teñidas histológicamente, el modelo puede ayudar a los cirujanos a estimar las células cancerosas residuales después de la cirugía y determinar el momento adecuado para la reanudación del tratamiento después de la cirugía.

Después de ser entrenado para identificar la ubicación de varios tipos de células utilizando imágenes básicas, el modelo se evaluó en un conjunto de datos más grande y separado de imágenes histológicas de 410 pacientes. El modelo dedujo los resultados del cáncer a partir de estas imágenes, identificando efectivamente patrones celulares que se correlacionan con la agresividad del cáncer. El modelo tiene el potencial de ayudar a los médicos a identificar pacientes con patrones celulares que indican un tumor más agresivo y una amenaza inminente de recaída o crecimiento rápido. Aunque los investigadores son optimistas sobre la capacidad predictiva del modelo, es necesario un mayor entrenamiento con más pacientes antes de su implementación entre los médicos. El equipo pretende perfeccionar el modelo para crear mapas celulares aún más detallados de los tumores de glioblastoma. Actualmente, hay disponible una versión de prueba de concepto de su modelo, GBM360, para que los investigadores carguen imágenes de diagnóstico y predigan los resultados de los pacientes con glioblastoma. Sin embargo, el modelo aún se encuentra en la fase de investigación y sus resultados algorítmicos aún no deberían guiar la atención al paciente. Los investigadores esperan que el algoritmo pueda eventualmente predecir los resultados de otras afecciones como el cáncer de mama o de pulmón.

Enlaces relacionados:
Stanford Medicine

New
Miembro Oro
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Biological Indicator Vials
BI-O.K.

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.