Aprendizaje automático reduce radicalmente la carga de trabajo del recuento de células para el diagnóstico de enfermedades
Por el equipo editorial de LabMedica en español Actualizado el 02 Jun 2022 |

El uso del aprendizaje automático para realizar recuentos de células sanguíneas para el diagnóstico de enfermedades, en lugar de máquinas de análisis de células costosas y, a menudo, menos precisas, ha sido muy laborioso, ya que requiere una enorme cantidad de trabajo de anotación manual por parte de humanos en el entrenamiento del modelo de aprendizaje automático. Ahora, los investigadores han desarrollado un nuevo método de entrenamiento que automatiza gran parte de esta actividad.
Investigadores de la Universidad de Benihang (Beijing, China) han desarrollado el nuevo esquema para entrenar una red neuronal convolucional (CNN), un tipo de aprendizaje automático que refleja la estructura de conexión de la corteza visual humana. La cantidad y el tipo de células en la sangre a menudo desempeñan un papel crucial en el diagnóstico de enfermedades, pero las técnicas de análisis celular comúnmente utilizadas para realizar dicho recuento de células sanguíneas, que involucran la detección y medición de las características físicas y químicas de las células suspendidas en el fluido, son costosas y requieren preparaciones complejas. Peor aún, la precisión de las máquinas analizadoras de células es solo de aproximadamente el 90 % debido a diversas influencias, como la temperatura, el pH, el voltaje y el campo magnético, que pueden confundir al equipo.
Con el fin de mejorar la precisión, reducir la complejidad y reducir los costos, últimamente gran parte de la investigación sobre alternativas se ha centrado en el uso de programas informáticos para realizar la "segmentación" en fotografías de la sangre tomadas por una cámara de alta definición conectada a un microscopio. La segmentación involucra algoritmos que realizan un etiquetado píxel por píxel de lo que aparece en una foto, en este caso, qué partes de la imagen son células y cuáles no, en esencia, contar el número de células en una imagen. Para las imágenes en las que aparece un solo tipo de célula, estos métodos logran un nivel de precisión aceptable, pero su funcionamiento es deficiente cuando se enfrentan a imágenes con múltiples tipos de células. Por lo que, en los últimos años, en un intento por resolver el problema, los investigadores recurrieron a las CNN.
Para que la CNN realice esta tarea, primero debe estar “entrenada” para comprender qué es y qué no es una célula en miles de imágenes de células que los humanos han etiquetado manualmente. Luego, cuando se alimenta con una nueva imagen sin etiquetar, reconoce y puede contar las células en ella. Los investigadores de la Universidad de Beihang desarrollaron un nuevo esquema para entrenar la CNN, en este caso, U-Net, un modelo de segmentación de red completamente convolucional que ha sido ampliamente utilizado en la segmentación de imágenes médicas desde que se desarrolló por primera vez en 2015. En el nuevo esquema de entrenamiento, la CNN primero se entrena en un conjunto de muchos miles de imágenes con un solo tipo de célula (tomadas de la sangre de ratones).
Estas imágenes de un solo tipo de célula son "preprocesadas" automáticamente por algoritmos convencionales que reducen el ruido en las imágenes, mejoran su calidad y detectan los contornos de los objetos en la imagen. Luego realizan una segmentación de imagen adaptativa. Este último algoritmo calcula los distintos niveles de gris en una imagen en blanco y negro, y si una parte de la imagen se encuentra más allá de un cierto umbral de gris, el algoritmo la segmenta como un objeto distinto. Lo que hace que el proceso sea adaptativo es que, en lugar de segmentar partes de los segmentos de la imagen de acuerdo con un umbral de gris fijo, lo hace de acuerdo con las características locales de la imagen.
Después de que el conjunto de entrenamiento de un solo tipo de célula se presenta al modelo U-Net, el modelo se ajusta utilizando un pequeño conjunto de imágenes anotadas manualmente de múltiples tipos de células. En comparación, queda una cierta cantidad de anotaciones manuales, y la cantidad de imágenes que los humanos deben etiquetar se reduce de lo que antes eran muchos miles a solo 600. Para probar su esquema de entrenamiento, los investigadores primero usaron un analizador de células tradicional en la misma muestra de sangre de ratón para hacer un conteo de células independiente, contra el cual podrían comparar su nuevo enfoque. Descubrieron que la precisión de su esquema de entrenamiento en la segmentación de imágenes de múltiples tipos de células fue del 94,85 %, que es el mismo nivel alcanzado por el entrenamiento con imágenes de múltiples tipos de células anotadas manualmente. La técnica también se puede aplicar a modelos más avanzados para considerar problemas de segmentación más complejos. Dado que la nueva técnica de entrenamiento aún implica cierto nivel de anotación manual, los investigadores esperan desarrollar un algoritmo completamente automático para anotar y entrenar modelos.
Enlaces relacionados:
Universidad de Benihang
Últimas Hematología noticias
- Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
- Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
- Recuento de leucocitos predice gravedad de síntomas de COVID-19
- Tecnología de recuento de plaquetas ayudará a prevenir errores de diagnóstico
- Sistema de hemostasia POC podría prevenir muertes maternas
- Nueva prueba evalúa capacidad de los glóbulos rojos para transportar oxígeno midiendo su forma
- Pruebas de hemograma completo personalizadas ayudarían a diagnosticar enfermedades en etapa temprana
- Prueba no invasiva determina estado RhD fetal a partir del plasma materno
- Tecnología de teléfonos inteligentes mide de forma no invasiva niveles de hemoglobina en sangre en POC
- Sistema de diagnóstico de hemograma completo y sepsis busca resultados más rápidos, tempranos y fáciles
- Nuevo grupo sanguíneo descubierto ayudará a identificar y tratar a pacientes
- Puntuación de plaquetas sanguíneas detecta el riesgo de ataque cardíaco y accidente cerebrovascular
- Sistema automatizado de sobremesa lleva pruebas de sangre a cualquier persona, en cualquier lugar
- Nuevos analizadores de hematología ofrecen resultados combinados de VSG y CBC/DIFF en 60 segundos
- Instrumento de próxima generación detecta trastornos de la hemoglobina en recién nacidos
- Primera prueba NAT 4 en 1 para el cribado de arbovirus podría reducir el riesgo de infecciones transmitidas por transfusiones
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásPatología
ver canal
Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
La terapia celular tiene un gran potencial en el tratamiento de enfermedades como el cáncer, las enfermedades inflamatorias y los trastornos degenerativos crónicos mediante la manipulación o el reemplazo... Más
Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
La tecnología de biopsia líquida, que se basa en análisis de sangre para la detección temprana del cáncer y el seguimiento de la carga oncológica en los pacientes,... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más