LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Desarrollan método rápido para identificar bacterias en muestras de sangre

Por el equipo editorial de LabMedica en español
Actualizado el 02 Mar 2017
Print article
En el diagnóstico clínico y la detección de patógenos, el análisis de muestras complejas para determinar genotipos de bajo nivel representa un desafío significativo. Se necesitan avances en velocidad, sensibilidad y extensión de multiplexación de los ensayos de detección de patógenos moleculares para mejorar el cuidado de los pacientes.
 
Se ha desarrollado una herramienta de diagnóstico, de escritorio, que detecta la presencia de bacterias dañinas en una muestra de sangre en cuestión de horas en lugar de días. La herramienta fue hecha posible gracias a una combinación de una química patentada, una ingeniería eléctrica innovadora y la y imagenología de alta gama, además de técnicas de análisis impulsadas por el aprendizaje automático.
 
Los bioingenieros de la Universidad de California en San Diego (La Jolla, CA, EUA) extrajeron y purificaron sangre de una muestra clínica conocida como negativa para bacterias. Se añadieron aproximadamente 2.000 genomas de Listeria monocytogenes a la extracción de sangre purificada. Luego se agregó la cantidad máxima de sangre y de mezcla de ADN bacteriano (8,63 μL), a la mezcla maestra de reacción en cadena de la polimerasa (PCR). El ADN se colocó entonces en un chip digital que permitía que cada pieza se multiplicara independientemente en su propia reacción pequeña. Para que el proceso funcionara a tan pequeñas escalas, cada pozo, que contenía ADN en el chip, tenía sólo 20 pL de volumen.
 
Se usó un termociclador PTC-200 de MJ Research (MJ Research, Waltham, MA, EUA), para la amplificación de los puntos finales. Los ingenieros tomaron imágenes del proceso de fusión con el microscopio de alto rendimiento y las imágenes fluorescentes se obtuvieron utilizando una plataforma Nikon Eclipse Ti (Nikon, Melville, NY, EUA) y fueron capaces de capturar las curvas de fusión de las bacterias. A continuación, analizaron las curvas con un algoritmo de aprendizaje de máquinas que desarrollaron. En un trabajo anterior, el algoritmo había sido entrenado en 37 tipos diferentes de bacterias que experimentaban diferentes reacciones en diferentes condiciones. Los científicos demostraron que era capaz de identificar las cepas bacterianas con un 99% de exactitud y, por el contrario, la tasa de error de los métodos tradicionales puede ser de hasta 22,6%.
 
El equipo concluyó que las curvas de fusión resultantes, específicas para las bacterias, son identificadas mediante el aprendizaje automático de soporte vectorial y que se pueden cuantificar las cargas de patógenos individuales. La plataforma reduce los volúmenes de reacción en un 99,995% y alcanza un aumento de más de 200 veces en el intervalo dinámico de detección en comparación con los métodos tradicionales de PCR de alta resolución de fusión (HRM). El estudio fue publicado el 8 de febrero de 2017, en la revista Scientific Reports.
 
Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Miembro Oro
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Canales

Química Clínica

ver canal
Imagen: El ionizador miniatura impreso en 3D es un componente clave de un espectrómetro de masas (foto cortesía del MIT)

Espectrómetro de masas impreso en 3D para el punto de atención supera a los modelos de última generación

La espectrometría de masas es una técnica precisa para identificar los componentes químicos de una muestra y tiene un potencial significativo para monitorear estados de salud de enfermedades... Más

Diagnóstico Molecular

ver canal
Imagen: un análisis de sangre podría predecir el riesgo de cáncer de pulmón con mayor precisión y reducir el número de escaneos requeridos (foto cortesía de 123RF)

Prueba de sangre predice con precisión el riesgo de cáncer de pulmón y reduce la necesidad de escaneos de TC

El cáncer de pulmón es extremadamente difícil de detectar tempranamente debido a las limitaciones de las tecnologías de detección actuales, que son costosas, a veces... Más

Hematología

ver canal
Imagen: El ensayo de Procleix Arboplex ha recibido la marca CE (foto cortesía de Grifols)

Primera prueba NAT 4 en 1 para el cribado de arbovirus podría reducir el riesgo de infecciones transmitidas por transfusiones

Los arbovirus representan una amenaza emergente para la salud mundial, exacerbada por el cambio climático y el aumento de la conectividad mundial que está facilitando su propagación a nuevas regiones.... Más

Inmunología

ver canal
Imagen: los exosomas pueden ser un biomarcador prometedor para el rechazo celular después del trasplante de órganos (foto cortesía de Nicolas Primola/Shutterstock)

Análisis de sangre para diagnóstico de rechazo celular después de trasplante de órganos podría reemplazar las biopsias quirúrgicas

Los órganos trasplantados enfrentan constantemente el riesgo de ser rechazados por el sistema inmunológico del receptor, que los diferencia de los órganos no propios mediante... Más

Patología

ver canal
Imagen: Comparación de imágenes de histopatología tradicionales versus los datos en bruto de PARS (foto cortesía de la Universidad de Waterloo)

Sistema de imágenes digitales impulsado por IA podría revolucionar el diagnóstico del cáncer

El proceso de biopsia es importante para confirmar la presencia de cáncer. En la técnica de histopatología convencional, el tejido se extirpa, se corta, se tiñe, se monta en... Más

Tecnología

ver canal
Imagen: el chip optofluídico de nanoporo utilizado en el nuevo sistema de diagnóstico (foto cortesía de UC Santa Cruz)

Nuevo sistema de diagnóstico de laboratorio en un chip iguala la precisión de las pruebas de PCR

Si bien las pruebas de PCR son el estándar de oro en cuanto a precisión para las pruebas de virología, tienen limitaciones como la complejidad, la necesidad de operadores de laboratorio capacitados y tiempos... Más