LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

IA aprovecha genética tumoral para predecir respuesta del paciente a quimioterapia

Por el equipo editorial de LabMedica en español
Actualizado el 07 Feb 2024
Print article
Imagen: Cáncer de cuello uterino, que se muestra aquí a nivel celular, con frecuencia resiste el tratamiento (Fotografía cortesía del Instituto Nacional del Cáncer/Unsplash)
Imagen: Cáncer de cuello uterino, que se muestra aquí a nivel celular, con frecuencia resiste el tratamiento (Fotografía cortesía del Instituto Nacional del Cáncer/Unsplash)

Comprender las respuestas de los tumores a los fármacos se vuelve un desafío debido a la naturaleza compleja de la replicación del ADN, un objetivo fundamental para muchos tratamientos contra el cáncer. Todas las células, incluidas las cancerosas, dependen de un sofisticado sistema de replicación del ADN durante la división celular. La mayoría de las quimioterapias tienen como objetivo interrumpir este proceso de replicación en células tumorales que se multiplican rápidamente. Dadas las diversas mutaciones genéticas en los tumores, predecir la resistencia a los medicamentos sigue siendo un desafío formidable. Ahora, los científicos han desarrollado un algoritmo de aprendizaje automático capaz de predecir cuándo el cáncer resistirá la quimioterapia. Este modelo se probó específicamente en cáncer de cuello uterino y predijo con precisión las respuestas al cisplatino, un fármaco de quimioterapia ampliamente utilizado. Identificó eficazmente tumores que probablemente resistirían el tratamiento y arrojó luz sobre los mecanismos moleculares que impulsan esta resistencia.

Desarrollado por la Facultad de Medicina de la Universidad de California en San Diego (La Jolla, CA, EUA), el algoritmo evalúa cómo varias mutaciones genéticas impactan colectivamente la respuesta de un tumor a los fármacos inhibidores de la replicación del ADN. La investigación se centró en 718 genes que normalmente se analizan en pruebas genéticas clínicas para detectar cáncer. Las mutaciones de estos genes formaron la base del modelo de aprendizaje automático, entrenado utilizando datos de respuesta a fármacos disponibles públicamente. Este proceso condujo a la identificación de 41 complejos moleculares (grupos de proteínas que interactúan) donde las alteraciones genéticas afectan la eficacia de los fármacos. La eficacia del modelo se demostró particularmente en el cáncer de cuello uterino, donde aproximadamente el 35 % de los tumores muestran resistencia al tratamiento.

El algoritmo distinguió con éxito entre tumores que probablemente responderían al tratamiento, correlacionándose con mejores resultados de los pacientes, y aquellos que eran resistentes. Es importante destacar que el modelo también proporcionó información sobre su proceso de toma de decisiones al identificar los complejos proteicos que impulsan la resistencia en el cáncer de cuello uterino. Esta característica de interpretabilidad del modelo es crucial no sólo por su eficacia sino también para establecer sistemas de IA confiables en aplicaciones médicas.

"Los médicos conocían previamente algunas mutaciones individuales que están asociadas con la resistencia al tratamiento, pero estas mutaciones aisladas tendían a carecer de un valor predictivo significativo. La razón es que una cantidad mucho mayor de mutaciones puede moldear la respuesta de un tumor al tratamiento de lo que se pensaba anteriormente", dijo Trey Ideker, PhD, profesor del Departamento de Medicina de UC San Diego. "La inteligencia artificial cierra esa brecha en nuestra comprensión, permitiéndonos analizar una compleja gama de miles de mutaciones a la vez".

"Desentrañar el proceso de toma de decisiones de un modelo de IA es crucial, a veces tan importante como la propia predicción", añadió Ideker. "La transparencia de nuestro modelo es una de sus fortalezas, en primer lugar porque genera confianza en el modelo y, en segundo lugar, porque cada uno de estos conjuntos moleculares que hemos identificado se convierte en un nuevo objetivo potencial para la quimioterapia. Somos optimistas de que nuestro modelo tendrá amplias aplicaciones, no sólo para mejorar el tratamiento actual contra el cáncer, sino también para impulsar otros nuevos".

Enlaces relacionados:
Universidad de California San Diego

Miembro Oro
CONTROLADOR DE PIPETA SEROLÓGICA
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.