Modelo de IA predice resultados de pacientes en múltiples tipos de cáncer
Por el equipo editorial de LabMedica en español Actualizado el 21 Dec 2023 |

En investigaciones anteriores, los científicos han examinado el impacto de las mutaciones en los genes que codifican factores epigenéticos (elementos que influyen en la activación o desactivación de genes) sobre la susceptibilidad al cáncer. Sin embargo, la comprensión de la influencia de los niveles de estos factores en la progresión del cáncer ha permanecido en gran medida inexplorada. Para abordar esta brecha, los investigadores han desarrollado un innovador modelo de inteligencia artificial (IA) basado en factores epigenéticos que pronostica con éxito los resultados de los pacientes en varios tipos de cáncer. Lo hace analizando los patrones de expresión genética de factores epigenéticos dentro de los tumores y categorizándolos en distintos grupos. Se ha demostrado que este método predice los resultados de los pacientes de manera más efectiva que las métricas convencionales como el grado y el estadio del cáncer. Además, estos conocimientos proporcionan una base para futuras terapias dirigidas a factores epigenéticos en el tratamiento del cáncer, como las histonas acetiltransferasas y los remodeladores de cromatina SWI/SNF.
Investigadores de UCLA Health (Los Ángeles, CA, EUA) examinaron los patrones de expresión de 720 factores epigenéticos en tumores de 24 tipos de cáncer diferentes. Clasificaron estos tumores en grupos únicos según estos patrones. Su estudio reveló que en 10 de estos tipos de cáncer, los grupos se correlacionaban con diferencias significativas en los resultados de los pacientes, incluida la supervivencia libre de progresión, la supervivencia específica de la enfermedad y la supervivencia general. Esta correlación fue particularmente notable en el carcinoma adrenocortical, el carcinoma de células claras renales, el glioma cerebral de grado inferior, el carcinoma hepatocelular de hígado y el adenocarcinoma de pulmón. En estos casos, los grupos que indicaban peores resultados generalmente mostraban estadios de cáncer más avanzados, tamaños de tumores más grandes o una diseminación más avanzada.
Luego, los investigadores utilizaron niveles de expresión genética del factor epigenético para entrenar un modelo de IA, con el objetivo de predecir los resultados de los pacientes específicamente en los cinco tipos de cáncer donde las diferencias de supervivencia eran más significativas. El modelo pudo segregar con precisión a los pacientes en dos grupos: aquellos que probablemente tendrían mejores resultados y aquellos que enfrentaron peores resultados. En particular, los genes más críticos para las predicciones del modelo de IA se superpusieron significativamente con los genes característicos que definen el grupo.
"Nuestra investigación ayuda a proporcionar una hoja de ruta para modelos de IA similares que pueden generarse a través de listas de factores epigenéticos de pronóstico disponibles públicamente", dijo el primer autor del estudio, Michael Cheng, estudiante de posgrado en el Programa Interdepartamental de Bioinformática de UCLA. "La hoja de ruta demuestra cómo identificar ciertos factores influyentes en diferentes tipos de cáncer y contiene un potencial interesante para predecir objetivos específicos para el tratamiento del cáncer".
Enlaces relacionados:
UCLA Health
Últimas Patología noticias
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más