LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Solución de aprendizaje automático ayuda a los patólogos a detectar lesiones cervicales precancerosas

Por el equipo editorial de LabMedica en español
Actualizado el 21 Jun 2023
Print article
Imagen: Una solución de aprendizaje automático ayuda a los patólogos a detectar displasia cervical (Fotografía cortesía de Freepik)
Imagen: Una solución de aprendizaje automático ayuda a los patólogos a detectar displasia cervical (Fotografía cortesía de Freepik)

El cáncer de cuello uterino se ubica como el cuarto cáncer más prevalente en las mujeres, con 604.000 nuevos casos informados en 2020, según la Organización Mundial de la Salud (OMS). Sin embargo, se destaca como uno de los cánceres más prevenibles y tratables, siempre que se detecte a tiempo y se maneje adecuadamente. Por lo tanto, la detección temprana de lesiones precancerosas es fundamental para la prevención de enfermedades. Ahora, los investigadores han desarrollado un método innovador que utiliza imágenes grandes de alta resolución para detectar lesiones precancerosas importantes.

Un equipo de investigadores de INESC TEC (Oporto, Portugal) e IMP Diagnostics (Oporto, Portugal) ha diseñado una solución de aprendizaje automático para ayudar a los patólogos a detectar la displasia cervical, haciendo que el proceso de diagnóstico de nuevas muestras sea completamente automático. Este es uno de los primeros trabajos publicados en utilizar portaobjetos completos. Los investigadores se propusieron desarrollar modelos de aprendizaje automático para respaldar la clasificación subjetiva de lesiones en el epitelio escamoso, la capa protectora del tejido contra los microorganismos, utilizando imágenes de portaobjetos completas (WSI) que contienen información de todo el tejido.

El equipo desarrolló una metodología poco supervisada: un método de aprendizaje automático que combina datos anotados y no anotados en la fase de entrenamiento del modelo para clasificar la displasia cervical. Esta técnica resulta particularmente beneficiosa considerando la dificultad de obtener anotaciones de datos patológicos: los grandes tamaños de imagen hacen que el proceso de anotación sea extremadamente laborioso, tedioso y muy subjetivo. Esta metodología permite a los investigadores establecer modelos con alto rendimiento, incluso cuando hay información faltante durante la fase de entrenamiento. El modelo resultante puede clasificar la displasia cervical, o el crecimiento anormal de células en la superficie, como lesiones escamosas intraepiteliales de grado bajo (LSIL) o alto (HSIL). Dada la complejidad y la naturaleza subjetiva del proceso de clasificación, estos modelos de aprendizaje automático pueden brindar una valiosa ayuda a los patólogos. Además, estos sistemas podrían actuar como un mecanismo de alerta temprana para casos sospechosos, alertando a los patólogos sobre casos que ameriten un examen más detallado.

“En la detección de displasia cervical, este fue uno de los primeros trabajos publicados que utiliza los portaobjetos completos, siguiendo un método que incluye la segmentación y posterior clasificación de las áreas de interés, haciendo completamente automático el diagnóstico de nuevas muestras”, explica Sara Oliveira, investigadora del INESC TEC.

Enlaces relacionados:
INESC TEC  
IMP Diagnostics

Miembro Oro
ANALIZADOR DE VIABILIDAD/DENSIDAD CELULAR AUTOMATIZADO
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
Biological Indicator Vials
BI-O.K.

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.