LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Algoritmo de aprendizaje profundo que detecta el SDRA con exactitud a nivel de experto podría cambiar el juego en el tratamiento de la COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 27 Apr 2021
Print article
Ilustración
Ilustración
Los investigadores han encontrado una solución que podría ayudar a brindar la atención adecuada a los pacientes con COVID-19 con síndrome de dificultad respiratoria aguda (SDRA), que es una lesión pulmonar, potencialmente mortal, que progresa rápidamente y, a menudo, puede provocar problemas de salud a largo plazo o la muerte, pero puede ser difícil de reconocer para los médicos.

Un equipo de investigación del Centro de Investigación Integrativa en Cuidados Intensivos de Michigan (MCIRCC; Ann Arbor, MI, EUA), desarrolló un nuevo algoritmo de inteligencia artificial (IA) que analiza las radiografías de tórax para detectar el SDRA. Muchos pacientes que mueren de COVID-19 mueren por complicaciones asociadas con el SDRA, que ocurre cuando el líquido se acumula en los sacos de aire de los pulmones y priva a los órganos del oxígeno que necesitan para funcionar.

La interpretación exacta de la radiografía de tórax de un paciente es un componente fundamental del diagnóstico de SDRA. Sin embargo, los estudios demuestran que hasta el 65% de los pacientes con SDRA se diagnostican tarde o se pasan por alto y no reciben terapias basadas en evidencia que mejoren los resultados. Cada día de retraso en el tratamiento basado en la evidencia se asocia con un aumento de la mortalidad. Por lo tanto, existe una necesidad urgente de herramientas computacionales que puedan analizar los estudios de radiología torácica para ayudar a los médicos con la vigilancia del SDRA en tiempo real y garantizar la fidelidad con los tratamientos basados en la evidencia.

El equipo de investigación de MCIRCC demostró que su algoritmo de inteligencia artificial que analiza las radiografías de tórax para el SDRA podría, de hecho, identificar los hallazgos del SDRA con mayor precisión que muchos médicos. También funcionó bien cuando fue validado externamente en pacientes de otro sistema hospitalario. El algoritmo que utilizaron, un tipo de modelo de aprendizaje automático llamado redes neuronales convolucionales profundas (CNN), tenía 121 capas y siete millones de parámetros.

Usando un enfoque innovador, el equipo entrenó el algoritmo para identificar hallazgos radiológicos comunes, pero no de SDRA, en 450.000 radiografías de tórax de fuentes disponibles públicamente. Luego entrenaron el algoritmo para detectar el SDRA a través de un conjunto de datos único de 8.000 estudios de rayos X de tórax cuidadosamente revisados y anotados para SDRA por médicos de Michigan Medicine. Este enfoque se denomina aprendizaje por transferencia, que tiene muchos paralelismos con la forma en que aprenden los seres humanos. Se necesitan más investigaciones para evaluar el impacto del algoritmo en un entorno clínico, pero el equipo de MCIRCC confía en que cambiará las reglas del juego. Ellos prevén que ayudará a los médicos a identificar a los pacientes con SDRA de manera más rápida y exacta y garantizará que los pacientes reciban atención basada en evidencia.

“En nuestro trabajo anterior, encontramos que los médicos tienen dificultades para identificar los hallazgos del SDRA en las radiografías de tórax”, dijo el Dr. Michael Sjoding, neumólogo crítico de Michigan Medicine y autor principal del estudio. “El reconocimiento y tratamiento tempranos son factores clave en el tratamiento del SDRA. Los retrasos pueden ser catastróficos. Ahora tenemos una forma altamente confiable de identificar a los pacientes con SDRA, lo que también nos permitirá estudiarlos de manera más efectiva”.

Enlace relacionado:
Centro de Investigación Integrativa en Cuidados Intensivos de Michigan

Miembro Oro
ENSAYOS TDM PARA ANTIPSICÓTICOS
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.