Algoritmo avanzado de aprendizaje automático predice con exactitud el riesgo de que la COVID-19 progrese a enfermedad severa o muerte
Por el equipo editorial de LabMedica en español Actualizado el 18 Mar 2021 |

Ilustración
Un algoritmo avanzado de aprendizaje automático utiliza datos clínicos de “cabecera” que se obtienen fácilmente para predecir con exactitud el riesgo de un paciente de desarrollar COVID-19 grave o morir a causa de la enfermedad.
Investigadores de Johns Hopkins Medicine (JHM; Baltimore, MD, EUA), desarrollaron el sistema avanzado de aprendizaje automático que puede predecir con exactitud cómo se desarrollará la enfermedad de un paciente con COVID-19 y transmitir sus hallazgos al médico en una forma fácilmente comprensible. La nueva herramienta de pronóstico, conocida como el Predictor de riesgo adaptativo de COVID-19 severo (SCARP), puede ayudar a definir el riesgo de un día y siete días, de que un paciente hospitalizado con COVID-19 desarrolle una forma más grave de la enfermedad o muera por ella.
Los médicos a menudo aprenden a reconocer patrones en los casos de COVID-19 después de tratar a muchos pacientes que la padecen. Los sistemas de aprendizaje automático prometen mejorar esa capacidad, reconociendo patrones más complejos en un gran número de personas con COVID-19 y utilizando esa información para predecir el curso del caso de un paciente individual. Sin embargo, los médicos que han jurado “no hacer daño” pueden ser reacios a basar las estrategias de tratamiento y atención de sus pacientes más gravemente enfermos en algoritmos de aprendizaje automático difíciles de usar o de interpretar. SCARP solicita una cantidad mínima de información para brindar una predicción exacta, haciéndola rápida, fácil de usar y confiable para basar las decisiones de tratamiento y atención.
El cerebro de SCARP es un algoritmo predictivo llamado Random Forests for Survival, Longitudinal and Multivariate Data (RF-SLAM). A diferencia de los métodos de predicción clínica anteriores que basan la puntuación de riesgo de un paciente en su condición en el momento en que ingresa al hospital, RF-SLAM se adapta a la última información disponible del paciente y considera los cambios en esas mediciones a lo largo del tiempo. Para hacer posible este análisis dinámico, RF-SLAM divide la estancia hospitalaria de un paciente en ventanas de seis horas. Los datos recopilados durante esos períodos de tiempo son evaluados, a continuación, por los “bosques aleatorios” del algoritmo de aproximadamente 1.000 “árboles de decisión” que operan como un conjunto. Esto permite que SCARP brinde una predicción de un resultado más exacta que la que podría hacer cada árbol de decisión individual por sí solo.
Para demostrar la capacidad de SCARP para predecir casos graves de COVID-19 o muertes por la enfermedad, los investigadores utilizaron un registro clínico con datos sobre pacientes hospitalizados con COVID-19. La información disponible de los pacientes incluyó datos demográficos, otras afecciones médicas y factores de riesgo conductuales, junto con más de 100 variables a lo largo del tiempo, como signos vitales, recuentos sanguíneos, perfiles metabólicos, frecuencia respiratoria y la cantidad de oxígeno suplementario necesario. Entre 3.163 pacientes admitidos con COVID-19 moderada, 228 (7%) enfermaron gravemente o murieron en un período de 24 horas; 355 (11%) adicionales se enfermaron gravemente o murieron durante la primera semana. También se recopilaron datos sobre el número de personas que desarrollaron COVID-19 grave o murieron en cualquier día dentro de los 14 días posteriores a la admisión. En general, las predicciones de riesgo de un día de SCARP para la progresión a COVID-19 grave o la muerte fueron 89% exactas, mientras que las predicciones de riesgo de siete días para ambos resultados fueron 83% exactas. El equipo ahora planea más ensayos de SCARP para validar su desempeño a gran escala utilizando bases de datos nacionales de pacientes.
“SCARP fue diseñado para proporcionar a los médicos una herramienta predictiva, interactiva y adaptativa, que permite ingresar variables clínicas en tiempo real al lado de la cama del paciente”, dijo Matthew Robinson, MD, profesor asistente de medicina en la Facultad de Medicina de la Universidad Johns Hopkins y autor principal del artículo. “Al generar una predicción clínica personalizada del desarrollo de una enfermedad grave o muerte en el día y la semana siguientes, y en cualquier momento de las dos primeras semanas de hospitalización, SCARP permitirá a un equipo médico tomar decisiones más informadas sobre la mejor manera de tratar a cada paciente con COVID-19”.
“Nuestra demostración exitosa muestra que SCARP tiene el potencial de ser una calculadora de riesgo, fácil de usar, altamente exacta y clínicamente significativa, para pacientes hospitalizados con COVID-19”, agregó Robinson. “Tener una comprensión sólida del riesgo en tiempo real de un paciente de progresar a una enfermedad grave o la muerte dentro de las próximas 24 horas y la próxima semana podría ayudar a los proveedores de atención médica a tomar decisiones más informadas y tomar decisiones de tratamiento para sus pacientes con COVID-19 a medida que se enferman más”.
Enlace relacionado:
Johns Hopkins Medicine
Investigadores de Johns Hopkins Medicine (JHM; Baltimore, MD, EUA), desarrollaron el sistema avanzado de aprendizaje automático que puede predecir con exactitud cómo se desarrollará la enfermedad de un paciente con COVID-19 y transmitir sus hallazgos al médico en una forma fácilmente comprensible. La nueva herramienta de pronóstico, conocida como el Predictor de riesgo adaptativo de COVID-19 severo (SCARP), puede ayudar a definir el riesgo de un día y siete días, de que un paciente hospitalizado con COVID-19 desarrolle una forma más grave de la enfermedad o muera por ella.
Los médicos a menudo aprenden a reconocer patrones en los casos de COVID-19 después de tratar a muchos pacientes que la padecen. Los sistemas de aprendizaje automático prometen mejorar esa capacidad, reconociendo patrones más complejos en un gran número de personas con COVID-19 y utilizando esa información para predecir el curso del caso de un paciente individual. Sin embargo, los médicos que han jurado “no hacer daño” pueden ser reacios a basar las estrategias de tratamiento y atención de sus pacientes más gravemente enfermos en algoritmos de aprendizaje automático difíciles de usar o de interpretar. SCARP solicita una cantidad mínima de información para brindar una predicción exacta, haciéndola rápida, fácil de usar y confiable para basar las decisiones de tratamiento y atención.
El cerebro de SCARP es un algoritmo predictivo llamado Random Forests for Survival, Longitudinal and Multivariate Data (RF-SLAM). A diferencia de los métodos de predicción clínica anteriores que basan la puntuación de riesgo de un paciente en su condición en el momento en que ingresa al hospital, RF-SLAM se adapta a la última información disponible del paciente y considera los cambios en esas mediciones a lo largo del tiempo. Para hacer posible este análisis dinámico, RF-SLAM divide la estancia hospitalaria de un paciente en ventanas de seis horas. Los datos recopilados durante esos períodos de tiempo son evaluados, a continuación, por los “bosques aleatorios” del algoritmo de aproximadamente 1.000 “árboles de decisión” que operan como un conjunto. Esto permite que SCARP brinde una predicción de un resultado más exacta que la que podría hacer cada árbol de decisión individual por sí solo.
Para demostrar la capacidad de SCARP para predecir casos graves de COVID-19 o muertes por la enfermedad, los investigadores utilizaron un registro clínico con datos sobre pacientes hospitalizados con COVID-19. La información disponible de los pacientes incluyó datos demográficos, otras afecciones médicas y factores de riesgo conductuales, junto con más de 100 variables a lo largo del tiempo, como signos vitales, recuentos sanguíneos, perfiles metabólicos, frecuencia respiratoria y la cantidad de oxígeno suplementario necesario. Entre 3.163 pacientes admitidos con COVID-19 moderada, 228 (7%) enfermaron gravemente o murieron en un período de 24 horas; 355 (11%) adicionales se enfermaron gravemente o murieron durante la primera semana. También se recopilaron datos sobre el número de personas que desarrollaron COVID-19 grave o murieron en cualquier día dentro de los 14 días posteriores a la admisión. En general, las predicciones de riesgo de un día de SCARP para la progresión a COVID-19 grave o la muerte fueron 89% exactas, mientras que las predicciones de riesgo de siete días para ambos resultados fueron 83% exactas. El equipo ahora planea más ensayos de SCARP para validar su desempeño a gran escala utilizando bases de datos nacionales de pacientes.
“SCARP fue diseñado para proporcionar a los médicos una herramienta predictiva, interactiva y adaptativa, que permite ingresar variables clínicas en tiempo real al lado de la cama del paciente”, dijo Matthew Robinson, MD, profesor asistente de medicina en la Facultad de Medicina de la Universidad Johns Hopkins y autor principal del artículo. “Al generar una predicción clínica personalizada del desarrollo de una enfermedad grave o muerte en el día y la semana siguientes, y en cualquier momento de las dos primeras semanas de hospitalización, SCARP permitirá a un equipo médico tomar decisiones más informadas sobre la mejor manera de tratar a cada paciente con COVID-19”.
“Nuestra demostración exitosa muestra que SCARP tiene el potencial de ser una calculadora de riesgo, fácil de usar, altamente exacta y clínicamente significativa, para pacientes hospitalizados con COVID-19”, agregó Robinson. “Tener una comprensión sólida del riesgo en tiempo real de un paciente de progresar a una enfermedad grave o la muerte dentro de las próximas 24 horas y la próxima semana podría ayudar a los proveedores de atención médica a tomar decisiones más informadas y tomar decisiones de tratamiento para sus pacientes con COVID-19 a medida que se enferman más”.
Enlace relacionado:
Johns Hopkins Medicine
Últimas COVID-19 noticias
- Inmunosensor nuevo allana el camino para pruebas rápidas POC para COVID-19 y enfermedades infecciosas emergentes
- Encuentran etiologías de COVID prolongada en muestras de sangre con infección aguda
- Dispositivo novedoso detecta anticuerpos contra la COVID-19 en cinco minutos
- Prueba para COVID-19 mediante CRISPR detecta SARS-CoV-2 en 30 minutos usando tijeras genéticas
- Asocian disbiosis del microbioma intestinal con la COVID-19
- Validan prueba rápida novedosa de antígeno para el SARS-CoV-2 con respecto a su exactitud diagnóstica
- Prueba nueva COVID + Influenza + VSR ayudará a estar preparados para la ‘tripledemia’
- IA elimina las conjeturas de las pruebas de flujo lateral
- Prueba de antígeno del SARS-CoV-2 más rápida, jamás diseñada, permite realizar pruebas de COVID-19 no invasivas en cualquier entorno
- Pruebas rápidas de antígeno detectan las variantes ómicron, delta del SARS-CoV-2
- Prueba en sangre realizada durante la infección inicial predice el riesgo de COVID prolongada
- Investigadores afirman que hay que crear “reservistas” de laboratorio para responder más rápidamente a la próxima pandemia
- Estudio encuentra que los profesionales sanitarios mostraron mayor interés en tecnologías POC durante la pandemia
- Plataforma de análisis de bajo costo para la COVID-19 combina sensibilidad de la PCR y velocidad de pruebas de antígeno
- Prueba de sangre por punción digital identifica inmunidad a la COVID-19
- Kit de prueba rápida determina inmunidad contra la COVID-19 y sus variantes
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásPatología
ver canal
Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
La terapia celular tiene un gran potencial en el tratamiento de enfermedades como el cáncer, las enfermedades inflamatorias y los trastornos degenerativos crónicos mediante la manipulación o el reemplazo... Más
Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
La tecnología de biopsia líquida, que se basa en análisis de sangre para la detección temprana del cáncer y el seguimiento de la carga oncológica en los pacientes,... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más