Algoritmo de inteligencia artificial predice el riesgo individual de mortalidad para los pacientes con COVID-19
Por el equipo editorial de LabMedica en español Actualizado el 22 Feb 2021 |

Imagen: El algoritmo de inteligencia artificial predice el riesgo de mortalidad individual para los pacientes con COVID-19 (Fotografía cortesía de patrikslezak)
Un algoritmo, desarrollado recientemente, entrenado con métodos de aprendizaje automático, usa la COVID-19 como ejemplo para predecir el riesgo de mortalidad individual de los pacientes.
Un equipo internacional, dirigido por investigadores del Instituto Max Planck de Sistemas Inteligentes (Tübingen, Alemania), desarrolló y entrenó el algoritmo para predecir el riesgo de mortalidad individual de los pacientes con COVID-19 basándose en los datos de miles de pacientes en todo el mundo. El algoritmo que tiene como objetivo ayudar a los profesionales médicos con predicciones de mortalidad para pacientes con COVID-19 también se puede entrenar para predecir el riesgo de mortalidad por otras enfermedades y, por lo tanto, apoyar a los médicos en los procesos de toma de decisiones.
El algoritmo, llamado Covews, que es la abreviatura de COVID-19 Early Warning System, (Sistema de Alerta Temprana para la COVID-19), se basa en datos médicos para predecir de manera confiable el riesgo de muerte de un paciente con hasta ocho días de anticipación con una sensibilidad de más del 95%. Esto significa que, en 95 de cada 100 casos, el algoritmo puede detectar si un paciente morirá a menos que se tomen medidas preventivas. Al mismo tiempo, Covews trabaja con una especificidad de poco menos del 70% para una predicción con ocho días de anticipación, lo que significa que, en aproximadamente 70 de cada 100 casos en los que predice la muerte, los pacientes finalmente mueren. En otras palabras, el algoritmo hace sonar una falsa alarma en solo 30 de cada 100 casos y es significativamente mejor para horizontes de tiempo más cortos. El algoritmo también se puede entrenar para hacer predicciones menos sensibles, pero más específicas.
Para desarrollar y especialmente para entrenar a Covews, los investigadores utilizaron 33.000 registros de datos anónimos de una cohorte llamada Optum, que rastrea a los pacientes en varios hospitales de EUA. Alimentaron el algoritmo con información sobre cómo varios parámetros de salud del paciente recopilados de forma rutinaria evolucionaron durante el curso de la enfermedad, y si la persona murió de COVID-19 o no. Como resultado, Covews aprendió a identificar patrones en los conjuntos de datos que indicaban un alto riesgo de mortalidad. Luego, el equipo internacional probó la exactitud con la que Covews determinó este riesgo en aproximadamente otros 14.000 conjuntos de datos de la cohorte Optum. Al probar Covews con datos de la red de salud global TriNetX, que incluye alrededor de 5.000 pacientes con pruebas COVID positivas en los EUA, Australia, India y Malasia, los investigadores demostraron que el algoritmo no solo predice el riesgo de mortalidad con un alto grado de certeza con conjuntos de datos de esta cohorte, sino también con datos de otros hospitales.
Aunque Covews hace predicciones fiables, es probable que pase bastante tiempo antes de que se utilice en la práctica. Esto se debe, en parte, a que en muchos hospitales los datos disponibles no están lo suficientemente estructurados, lo que hace que el desarrollo de un software adecuado basado en el algoritmo sea particularmente desafiante. En cualquier caso, al hacer que Covews esté disponible gratuitamente en Internet, los investigadores sientan las bases para poner el algoritmo en práctica rápidamente. No solo se podría usar para pacientes con COVID-19; con la formación adecuada, también podría predecir el riesgo de mortalidad por otras enfermedades.
“Por lo tanto, los médicos siempre deben decidir las medidas de tratamiento”, dijo Stefan Bauer del Instituto Max Planck de Sistemas Inteligentes, quien dirigió el equipo internacional de investigadores. “Sin embargo, nuestro algoritmo puede proporcionar información que la gente no puede derivar de los datos y que puede ayudar con la toma de decisiones médicas”.
Enlace relacionado:
Instituto Max Planck de Sistemas Inteligentes
Un equipo internacional, dirigido por investigadores del Instituto Max Planck de Sistemas Inteligentes (Tübingen, Alemania), desarrolló y entrenó el algoritmo para predecir el riesgo de mortalidad individual de los pacientes con COVID-19 basándose en los datos de miles de pacientes en todo el mundo. El algoritmo que tiene como objetivo ayudar a los profesionales médicos con predicciones de mortalidad para pacientes con COVID-19 también se puede entrenar para predecir el riesgo de mortalidad por otras enfermedades y, por lo tanto, apoyar a los médicos en los procesos de toma de decisiones.
El algoritmo, llamado Covews, que es la abreviatura de COVID-19 Early Warning System, (Sistema de Alerta Temprana para la COVID-19), se basa en datos médicos para predecir de manera confiable el riesgo de muerte de un paciente con hasta ocho días de anticipación con una sensibilidad de más del 95%. Esto significa que, en 95 de cada 100 casos, el algoritmo puede detectar si un paciente morirá a menos que se tomen medidas preventivas. Al mismo tiempo, Covews trabaja con una especificidad de poco menos del 70% para una predicción con ocho días de anticipación, lo que significa que, en aproximadamente 70 de cada 100 casos en los que predice la muerte, los pacientes finalmente mueren. En otras palabras, el algoritmo hace sonar una falsa alarma en solo 30 de cada 100 casos y es significativamente mejor para horizontes de tiempo más cortos. El algoritmo también se puede entrenar para hacer predicciones menos sensibles, pero más específicas.
Para desarrollar y especialmente para entrenar a Covews, los investigadores utilizaron 33.000 registros de datos anónimos de una cohorte llamada Optum, que rastrea a los pacientes en varios hospitales de EUA. Alimentaron el algoritmo con información sobre cómo varios parámetros de salud del paciente recopilados de forma rutinaria evolucionaron durante el curso de la enfermedad, y si la persona murió de COVID-19 o no. Como resultado, Covews aprendió a identificar patrones en los conjuntos de datos que indicaban un alto riesgo de mortalidad. Luego, el equipo internacional probó la exactitud con la que Covews determinó este riesgo en aproximadamente otros 14.000 conjuntos de datos de la cohorte Optum. Al probar Covews con datos de la red de salud global TriNetX, que incluye alrededor de 5.000 pacientes con pruebas COVID positivas en los EUA, Australia, India y Malasia, los investigadores demostraron que el algoritmo no solo predice el riesgo de mortalidad con un alto grado de certeza con conjuntos de datos de esta cohorte, sino también con datos de otros hospitales.
Aunque Covews hace predicciones fiables, es probable que pase bastante tiempo antes de que se utilice en la práctica. Esto se debe, en parte, a que en muchos hospitales los datos disponibles no están lo suficientemente estructurados, lo que hace que el desarrollo de un software adecuado basado en el algoritmo sea particularmente desafiante. En cualquier caso, al hacer que Covews esté disponible gratuitamente en Internet, los investigadores sientan las bases para poner el algoritmo en práctica rápidamente. No solo se podría usar para pacientes con COVID-19; con la formación adecuada, también podría predecir el riesgo de mortalidad por otras enfermedades.
“Por lo tanto, los médicos siempre deben decidir las medidas de tratamiento”, dijo Stefan Bauer del Instituto Max Planck de Sistemas Inteligentes, quien dirigió el equipo internacional de investigadores. “Sin embargo, nuestro algoritmo puede proporcionar información que la gente no puede derivar de los datos y que puede ayudar con la toma de decisiones médicas”.
Enlace relacionado:
Instituto Max Planck de Sistemas Inteligentes
Últimas COVID-19 noticias
- Inmunosensor nuevo allana el camino para pruebas rápidas POC para COVID-19 y enfermedades infecciosas emergentes
- Encuentran etiologías de COVID prolongada en muestras de sangre con infección aguda
- Dispositivo novedoso detecta anticuerpos contra la COVID-19 en cinco minutos
- Prueba para COVID-19 mediante CRISPR detecta SARS-CoV-2 en 30 minutos usando tijeras genéticas
- Asocian disbiosis del microbioma intestinal con la COVID-19
- Validan prueba rápida novedosa de antígeno para el SARS-CoV-2 con respecto a su exactitud diagnóstica
- Prueba nueva COVID + Influenza + VSR ayudará a estar preparados para la ‘tripledemia’
- IA elimina las conjeturas de las pruebas de flujo lateral
- Prueba de antígeno del SARS-CoV-2 más rápida, jamás diseñada, permite realizar pruebas de COVID-19 no invasivas en cualquier entorno
- Pruebas rápidas de antígeno detectan las variantes ómicron, delta del SARS-CoV-2
- Prueba en sangre realizada durante la infección inicial predice el riesgo de COVID prolongada
- Investigadores afirman que hay que crear “reservistas” de laboratorio para responder más rápidamente a la próxima pandemia
- Estudio encuentra que los profesionales sanitarios mostraron mayor interés en tecnologías POC durante la pandemia
- Plataforma de análisis de bajo costo para la COVID-19 combina sensibilidad de la PCR y velocidad de pruebas de antígeno
- Prueba de sangre por punción digital identifica inmunidad a la COVID-19
- Kit de prueba rápida determina inmunidad contra la COVID-19 y sus variantes
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásPatología
ver canal
Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
La terapia celular tiene un gran potencial en el tratamiento de enfermedades como el cáncer, las enfermedades inflamatorias y los trastornos degenerativos crónicos mediante la manipulación o el reemplazo... Más
Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
La tecnología de biopsia líquida, que se basa en análisis de sangre para la detección temprana del cáncer y el seguimiento de la carga oncológica en los pacientes,... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más