Método nuevo basado en aprendizaje automático identifica los medicamentos existentes a los que se les podría dar un segundo uso para combatir la COVID-19
Por el equipo editorial de LabMedica en español Actualizado el 17 Feb 2021 |

Ilustración
Los investigadores han desarrollado un método basado en el aprendizaje automático para identificar medicamentos a los que se les podría dar un segundo uso para combatir la COVID-19 en pacientes ancianos.
El método basado en el aprendizaje automático, desarrollado por investigadores del Instituto Tecnológico de Massachusetts (MIT; Cambridge, MA, EUA), tiene como objetivo identificar los medicamentos que ya están en el mercado y a los que se les podría dar un segundo uso para combatir la COVID-19, particularmente en los ancianos. El sistema explica los cambios en la expresión génica en las células pulmonares causados tanto por la enfermedad como por el envejecimiento. Esa combinación podría permitir a los expertos médicos buscar más rápidamente medicamentos para pruebas clínicas en pacientes de edad avanzada, que tienden a experimentar síntomas más graves. Los investigadores señalaron a la proteína RIPK1 como un objetivo prometedor para los fármacos COVID-19 e identificaron tres fármacos aprobados que actúan sobre la expresión de RIPK1.
El endurecimiento del tejido pulmonar en la COVID-19 en los pacientes mayores afectados debido al envejecimiento, muestra diferentes patrones de expresión génica que en las personas más jóvenes, incluso en respuesta a la misma señal. Los investigadores analizaron el envejecimiento junto con el SARS-CoV-2, incluida la identificación de los genes en la intersección de estas dos vías. Para seleccionar medicamentos aprobados que pudieran actuar en estas vías, el equipo recurrió a big data e inteligencia artificial.
Los investigadores se concentraron en los candidatos de reutilización de fármacos más prometedores en tres pasos amplios. Primero, generaron una gran lista de posibles medicamentos utilizando una técnica de aprendizaje automático llamada autocodificador. A continuación, mapearon la red de genes y proteínas involucradas tanto en el envejecimiento como en la infección por SARS-CoV-2. Por último, utilizaron algoritmos estadísticos para comprender la causalidad en esa red, lo que les permitió identificar genes “río arriba” que causaron efectos en cascada en toda la red. En principio, los fármacos dirigidos a esos genes y proteínas ascendentes deberían ser candidatos prometedores para los ensayos clínicos.
Para generar una lista inicial de fármacos potenciales, el autocodificador del equipo se basó en dos conjuntos de datos clave de patrones de expresión génica. Un conjunto de datos mostró cómo la expresión en varios tipos de células respondió a una variedad de medicamentos que ya estaban en el mercado, y el otro mostró cómo la expresión respondía a la infección con SARS-CoV-2. El autocodificador examinó los conjuntos de datos para resaltar los medicamentos cuyos impactos en la expresión genética parecían contrarrestar los efectos del SARS-CoV-2. A continuación, los investigadores redujeron la lista de fármacos potenciales centrándose en las vías genéticas clave. Mapearon las interacciones de las proteínas involucradas en el envejecimiento y las vías de infección por SARS-CoV-2. Luego identificaron áreas de superposición entre los dos mapas. Ese esfuerzo identificó la red de expresión génica precisa a la que un fármaco debería dirigirse para combatir la COVID-19 en pacientes ancianos.
Los investigadores tenían que identificar qué genes y proteínas estaban “río arriba” (es decir, tienen efectos en cascada sobre la expresión de otros genes) y cuáles estaban “río abajo” (es decir, su expresión está alterada por cambios previos en la red). Un candidato a fármaco ideal se enfocaría en los genes en el extremo superior de la red para minimizar los impactos de la infección. Por ello, el equipo utilizó algoritmos que infieren causalidad en sistemas interactivos para convertir su red no dirigida en una red causal. La red causal final identificó a RIPK1 como un gen/proteína diana para posibles fármacos para la COVID-19, ya que tiene numerosos efectos posteriores. Los investigadores identificaron una lista de los medicamentos aprobados que actúan sobre RIPK1 y pueden tener potencial para tratar la COVID-19. Anteriormente, estos medicamentos habían sido aprobados para uso en cáncer. Otros medicamentos que también se identificaron, como la ribavirina y el quinapril, ya se encuentran en ensayos clínicos para la COVID-19.
Los investigadores ahora planean compartir sus hallazgos con las compañías farmacéuticas; se necesitan pruebas clínicas para determinar la eficacia antes de que cualquiera de los medicamentos identificados pueda ser aprobado para un segundo uso en pacientes ancianos con COVID-19. Si bien este estudio en particular se centró en la COVID-19, los investigadores dicen que su marco es ampliable.
“Estoy muy emocionada de que esta plataforma se pueda aplicar de manera más general a otras infecciones o enfermedades”, dijo Anastasiya Belyaeva, coautora del estudio y estudiante de doctorado del MIT.
Enlace relacionado:
Instituto Tecnológico de Massachusetts (MIT)
El método basado en el aprendizaje automático, desarrollado por investigadores del Instituto Tecnológico de Massachusetts (MIT; Cambridge, MA, EUA), tiene como objetivo identificar los medicamentos que ya están en el mercado y a los que se les podría dar un segundo uso para combatir la COVID-19, particularmente en los ancianos. El sistema explica los cambios en la expresión génica en las células pulmonares causados tanto por la enfermedad como por el envejecimiento. Esa combinación podría permitir a los expertos médicos buscar más rápidamente medicamentos para pruebas clínicas en pacientes de edad avanzada, que tienden a experimentar síntomas más graves. Los investigadores señalaron a la proteína RIPK1 como un objetivo prometedor para los fármacos COVID-19 e identificaron tres fármacos aprobados que actúan sobre la expresión de RIPK1.
El endurecimiento del tejido pulmonar en la COVID-19 en los pacientes mayores afectados debido al envejecimiento, muestra diferentes patrones de expresión génica que en las personas más jóvenes, incluso en respuesta a la misma señal. Los investigadores analizaron el envejecimiento junto con el SARS-CoV-2, incluida la identificación de los genes en la intersección de estas dos vías. Para seleccionar medicamentos aprobados que pudieran actuar en estas vías, el equipo recurrió a big data e inteligencia artificial.
Los investigadores se concentraron en los candidatos de reutilización de fármacos más prometedores en tres pasos amplios. Primero, generaron una gran lista de posibles medicamentos utilizando una técnica de aprendizaje automático llamada autocodificador. A continuación, mapearon la red de genes y proteínas involucradas tanto en el envejecimiento como en la infección por SARS-CoV-2. Por último, utilizaron algoritmos estadísticos para comprender la causalidad en esa red, lo que les permitió identificar genes “río arriba” que causaron efectos en cascada en toda la red. En principio, los fármacos dirigidos a esos genes y proteínas ascendentes deberían ser candidatos prometedores para los ensayos clínicos.
Para generar una lista inicial de fármacos potenciales, el autocodificador del equipo se basó en dos conjuntos de datos clave de patrones de expresión génica. Un conjunto de datos mostró cómo la expresión en varios tipos de células respondió a una variedad de medicamentos que ya estaban en el mercado, y el otro mostró cómo la expresión respondía a la infección con SARS-CoV-2. El autocodificador examinó los conjuntos de datos para resaltar los medicamentos cuyos impactos en la expresión genética parecían contrarrestar los efectos del SARS-CoV-2. A continuación, los investigadores redujeron la lista de fármacos potenciales centrándose en las vías genéticas clave. Mapearon las interacciones de las proteínas involucradas en el envejecimiento y las vías de infección por SARS-CoV-2. Luego identificaron áreas de superposición entre los dos mapas. Ese esfuerzo identificó la red de expresión génica precisa a la que un fármaco debería dirigirse para combatir la COVID-19 en pacientes ancianos.
Los investigadores tenían que identificar qué genes y proteínas estaban “río arriba” (es decir, tienen efectos en cascada sobre la expresión de otros genes) y cuáles estaban “río abajo” (es decir, su expresión está alterada por cambios previos en la red). Un candidato a fármaco ideal se enfocaría en los genes en el extremo superior de la red para minimizar los impactos de la infección. Por ello, el equipo utilizó algoritmos que infieren causalidad en sistemas interactivos para convertir su red no dirigida en una red causal. La red causal final identificó a RIPK1 como un gen/proteína diana para posibles fármacos para la COVID-19, ya que tiene numerosos efectos posteriores. Los investigadores identificaron una lista de los medicamentos aprobados que actúan sobre RIPK1 y pueden tener potencial para tratar la COVID-19. Anteriormente, estos medicamentos habían sido aprobados para uso en cáncer. Otros medicamentos que también se identificaron, como la ribavirina y el quinapril, ya se encuentran en ensayos clínicos para la COVID-19.
Los investigadores ahora planean compartir sus hallazgos con las compañías farmacéuticas; se necesitan pruebas clínicas para determinar la eficacia antes de que cualquiera de los medicamentos identificados pueda ser aprobado para un segundo uso en pacientes ancianos con COVID-19. Si bien este estudio en particular se centró en la COVID-19, los investigadores dicen que su marco es ampliable.
“Estoy muy emocionada de que esta plataforma se pueda aplicar de manera más general a otras infecciones o enfermedades”, dijo Anastasiya Belyaeva, coautora del estudio y estudiante de doctorado del MIT.
Enlace relacionado:
Instituto Tecnológico de Massachusetts (MIT)
Últimas COVID-19 noticias
- Inmunosensor nuevo allana el camino para pruebas rápidas POC para COVID-19 y enfermedades infecciosas emergentes
- Encuentran etiologías de COVID prolongada en muestras de sangre con infección aguda
- Dispositivo novedoso detecta anticuerpos contra la COVID-19 en cinco minutos
- Prueba para COVID-19 mediante CRISPR detecta SARS-CoV-2 en 30 minutos usando tijeras genéticas
- Asocian disbiosis del microbioma intestinal con la COVID-19
- Validan prueba rápida novedosa de antígeno para el SARS-CoV-2 con respecto a su exactitud diagnóstica
- Prueba nueva COVID + Influenza + VSR ayudará a estar preparados para la ‘tripledemia’
- IA elimina las conjeturas de las pruebas de flujo lateral
- Prueba de antígeno del SARS-CoV-2 más rápida, jamás diseñada, permite realizar pruebas de COVID-19 no invasivas en cualquier entorno
- Pruebas rápidas de antígeno detectan las variantes ómicron, delta del SARS-CoV-2
- Prueba en sangre realizada durante la infección inicial predice el riesgo de COVID prolongada
- Investigadores afirman que hay que crear “reservistas” de laboratorio para responder más rápidamente a la próxima pandemia
- Estudio encuentra que los profesionales sanitarios mostraron mayor interés en tecnologías POC durante la pandemia
- Plataforma de análisis de bajo costo para la COVID-19 combina sensibilidad de la PCR y velocidad de pruebas de antígeno
- Prueba de sangre por punción digital identifica inmunidad a la COVID-19
- Kit de prueba rápida determina inmunidad contra la COVID-19 y sus variantes
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásPatología
ver canal
Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
La terapia celular tiene un gran potencial en el tratamiento de enfermedades como el cáncer, las enfermedades inflamatorias y los trastornos degenerativos crónicos mediante la manipulación o el reemplazo... Más
Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
La tecnología de biopsia líquida, que se basa en análisis de sangre para la detección temprana del cáncer y el seguimiento de la carga oncológica en los pacientes,... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más