Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Modelo de aprendizaje automático que puede predecir la forma como interactuarán los genes y las medicinas identifica tratamientos prometedores para la COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 05 Feb 2021
Print article
Imagen: El modelo informático puede predecir cómo interactuarán los genes humanos y los medicamentos (Fotografía cortesía de Getty Images)
Imagen: El modelo informático puede predecir cómo interactuarán los genes humanos y los medicamentos (Fotografía cortesía de Getty Images)
Un modelo nuevo de aprendizaje profundo que puede predecir cómo interactuarán los genes humanos y los medicamentos ha identificado al menos 10 compuestos que pueden ser prometedores como tratamientos para la COVID-19.

El modelo informático, que los investigadores denominan “DeepCE”, pronunciado como “Dip Si”, fue creado por científicos informáticos de la Universidad Estatal de Ohio (Columbus, OH, EUA) y ayuda a encontrar fármacos candidatos para nuevas enfermedades. Todos menos dos de los medicamentos identificados como posibles tratamientos para la COVID-19 por el modelo de aprendizaje profundo todavía se consideran en investigación y su efectividad contra la hepatitis C, enfermedades fúngicas, cáncer y enfermedades cardíacas está en ensayo. La lista también incluye los medicamentos aprobados ciclosporina, un inmunosupresor que previene el rechazo de órganos trasplantados y la anidulafungina, un agente antifúngico.

Se necesita hacer mucho más trabajo antes de que se confirme que cualquiera de estos medicamentos es un tratamiento seguro y eficaz para las personas infectadas con el SARS-CoV-2. Pero al usar inteligencia artificial para llegar a estas opciones, los científicos han ahorrado a los investigadores farmacéuticos y clínicos el tiempo y el dinero que se necesitarían para buscar posibles fármacos contra la COVID-19 de forma fragmentada. Los investigadores han notado que algunos de los candidatos de reutilización que generó el modelo ya se han estudiado para su uso potencial en pacientes con COVID-19.

Para hacer predicciones sobre cómo los genes y los medicamentos interactuarán y producirán candidatos para la reutilización de medicamentos, DeepCE se basa en dos fuentes principales de datos disponibles públicamente: L1000, un depósito de datos de líneas celulares humanas financiado por los Institutos Nacionales de Salud que muestra cómo la expresión génica cambia en respuesta a medicamentos, y DrugBank, que contiene información sobre las estructuras químicas y otros detalles de aproximadamente 11.000 medicamentos aprobados y en investigación.

L1000 muestra comparaciones de líneas celulares en paralelo de la actividad de expresión génica estándar con los cambios en la expresión génica producidos por las interacciones con fármacos específicos. Las líneas celulares representan enfermedades, como el melanoma y órganos, como los riñones y los pulmones. Es un proyecto en curso, con datos que se agregan a medida que experimentos en animales o humanos complementan los perfiles de expresión génica producidos en experimentos de líneas celulares.

Los investigadores del estado de Ohio entrenaron el modelo DeepCE al ejecutar todos los datos de L1000 a través de un algoritmo contra compuestos químicos específicos y sus dosis. Para llenar los vacíos de datos, el modelo convierte las descripciones de compuestos químicos en cifras, lo que permite la consideración automática de los efectos de sus componentes separados sobre los genes. Y para los genes no representados en L1000, el equipo utilizó un enfoque de aprendizaje profundo llamado “mecanismo de atención” para aumentar la muestra “aprendida” del modelo de interacciones gen-compuesto químico, lo que mejora el desempeño del marco de trabajo.

El equipo aplicó la matriz de predicción de la expresión génica de DeepCE, centrándose en datos de líneas celulares de pulmón y vías respiratorias y todo el catálogo de compuestos de DrugBank, a la información genética proporcionada por los primeros documentos COVID-19 y datos gubernamentales adicionales. Los datos de COVID-19 demostraron cómo la expresión de genes humanos había respondido a la infección con SARS-CoV-2, creando una “firma de enfermedad”.

“Cuando nadie tiene información sobre una nueva enfermedad, este modelo muestra cómo la inteligencia artificial puede ayudar a resolver el problema de cómo pensar en un tratamiento potencial”, dijo el autor principal, Ping Zhang, profesor asistente de ciencias de la computación e ingeniería e informática biomédica en la Universidad del Estado de Ohio. “Las grandes mentes piensan igual: algunos compuestos principales identificados por la inteligencia artificial coinciden con descubrimientos posteriores de la inteligencia humana”.

Enlace relacionado:
Universidad Estatal de Ohio

Miembro Oro
ANALIZADOR DE VIABILIDAD/DENSIDAD CELULAR AUTOMATIZADO
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centromere B Assay
Centromere B Test
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.