El primer Gran Desafío de segmentación de lesiones pulmonares detectadas con la TC para la COVID-19, revela los 10 mejores resultados
Por el equipo editorial de LabMedica en español Actualizado el 14 Jan 2021 |

Ilustración
Se dieron a conocer los 10 resultados principales en el primer Gran Desafío de Segmentación de Lesiones Pulmonares por TC para la COVID-19, un concurso de investigación innovador centrado en el desarrollo de modelos de inteligencia artificial (IA) para ayudar en la visualización y medición de lesiones específicas de COVID-19 en los pulmones de pacientes infectados, lo que potencialmente facilita intervenciones médicas más oportunas y específicas para cada paciente.
El concurso, que atrajo a más de 1.000 participantes de todo el mundo, fue presentado por el Instituto Sheikh Zayed de Innovación Quirúrgica Pediátrica del Hospital Nacional Pediátrico (Washington, DC, EUA) en colaboración con la empresa de tecnología de inteligencia artificial NVIDIA (Santa Clara, CA, EUA) y los Institutos Nacionales. de Salud (NIH). Los modelos de IA presentados a la competencia utilizaron un conjunto de datos multiinstitucionales y multinacionales proporcionados por varios conjuntos de datos públicos que se originaron en pacientes de diferentes edades, géneros y con una gravedad variable de la enfermedad. NVIDIA premió con una GPU a los cinco primeros ganadores y también apoyó el proceso de selección y evaluación.
Los 10 mejores algoritmos de IA se identificaron a partir de un campo altamente competitivo de participantes que probaron los datos en noviembre y diciembre de 2020. Además de un premio por los cinco mejores modelos de IA, estos algoritmos ganadores ahora están disponibles para asociarse con instituciones clínicas de todo el mundo con el fin de evaluar más a fondo cómo estos métodos de aprendizaje automático e imágenes cuantitativas pueden tener un impacto potencial en la salud pública mundial.
“La mejora del tratamiento con COVID-19 comienza con una comprensión más clara del estado de la enfermedad del paciente. Sin embargo, una falta previa de colaboración de datos globales limitó a los médicos en su capacidad para comprender de manera rápida y efectiva la gravedad de la enfermedad en pacientes adultos y pediátricos”, dijo Marius George Linguraru, D.Phil., MA, M.Sc., investigador principal del Instituto Sheikh Zayed para la Innovación Quirúrgica Pediátrica en el Nacional Pediátrico, quien dirigió la iniciativa Gran Desafío. “Al aprovechar el poder de la IA a través de imágenes cuantitativas y aprendizaje automático, estos descubrimientos ayudan a los médicos a comprender mejor la gravedad de la COVID-19 y potencialmente estratificar y clasificar en protocolos de tratamiento adecuados para las diferentes etapas de la enfermedad”.
“Las anotaciones de calidad son un factor limitante en el desarrollo de modelos útiles de IA”, dijo Mona Flores, M.D., directora global de IA médica de NVIDIA. “Utilizando el modelo de segmentación de lesiones de NVIDIA COVID, disponible en nuestro centro de software NGC, pudimos etiquetar rápidamente el conjunto de datos de los NIH, lo que permitió a los radiólogos realizar anotaciones precisas en un tiempo récord”.
Enlace relacionado:
Hospital Nacional Pediátrico
El concurso, que atrajo a más de 1.000 participantes de todo el mundo, fue presentado por el Instituto Sheikh Zayed de Innovación Quirúrgica Pediátrica del Hospital Nacional Pediátrico (Washington, DC, EUA) en colaboración con la empresa de tecnología de inteligencia artificial NVIDIA (Santa Clara, CA, EUA) y los Institutos Nacionales. de Salud (NIH). Los modelos de IA presentados a la competencia utilizaron un conjunto de datos multiinstitucionales y multinacionales proporcionados por varios conjuntos de datos públicos que se originaron en pacientes de diferentes edades, géneros y con una gravedad variable de la enfermedad. NVIDIA premió con una GPU a los cinco primeros ganadores y también apoyó el proceso de selección y evaluación.
Los 10 mejores algoritmos de IA se identificaron a partir de un campo altamente competitivo de participantes que probaron los datos en noviembre y diciembre de 2020. Además de un premio por los cinco mejores modelos de IA, estos algoritmos ganadores ahora están disponibles para asociarse con instituciones clínicas de todo el mundo con el fin de evaluar más a fondo cómo estos métodos de aprendizaje automático e imágenes cuantitativas pueden tener un impacto potencial en la salud pública mundial.
“La mejora del tratamiento con COVID-19 comienza con una comprensión más clara del estado de la enfermedad del paciente. Sin embargo, una falta previa de colaboración de datos globales limitó a los médicos en su capacidad para comprender de manera rápida y efectiva la gravedad de la enfermedad en pacientes adultos y pediátricos”, dijo Marius George Linguraru, D.Phil., MA, M.Sc., investigador principal del Instituto Sheikh Zayed para la Innovación Quirúrgica Pediátrica en el Nacional Pediátrico, quien dirigió la iniciativa Gran Desafío. “Al aprovechar el poder de la IA a través de imágenes cuantitativas y aprendizaje automático, estos descubrimientos ayudan a los médicos a comprender mejor la gravedad de la COVID-19 y potencialmente estratificar y clasificar en protocolos de tratamiento adecuados para las diferentes etapas de la enfermedad”.
“Las anotaciones de calidad son un factor limitante en el desarrollo de modelos útiles de IA”, dijo Mona Flores, M.D., directora global de IA médica de NVIDIA. “Utilizando el modelo de segmentación de lesiones de NVIDIA COVID, disponible en nuestro centro de software NGC, pudimos etiquetar rápidamente el conjunto de datos de los NIH, lo que permitió a los radiólogos realizar anotaciones precisas en un tiempo récord”.
Enlace relacionado:
Hospital Nacional Pediátrico
Últimas COVID-19 noticias
- Inmunosensor nuevo allana el camino para pruebas rápidas POC para COVID-19 y enfermedades infecciosas emergentes
- Encuentran etiologías de COVID prolongada en muestras de sangre con infección aguda
- Dispositivo novedoso detecta anticuerpos contra la COVID-19 en cinco minutos
- Prueba para COVID-19 mediante CRISPR detecta SARS-CoV-2 en 30 minutos usando tijeras genéticas
- Asocian disbiosis del microbioma intestinal con la COVID-19
- Validan prueba rápida novedosa de antígeno para el SARS-CoV-2 con respecto a su exactitud diagnóstica
- Prueba nueva COVID + Influenza + VSR ayudará a estar preparados para la ‘tripledemia’
- IA elimina las conjeturas de las pruebas de flujo lateral
- Prueba de antígeno del SARS-CoV-2 más rápida, jamás diseñada, permite realizar pruebas de COVID-19 no invasivas en cualquier entorno
- Pruebas rápidas de antígeno detectan las variantes ómicron, delta del SARS-CoV-2
- Prueba en sangre realizada durante la infección inicial predice el riesgo de COVID prolongada
- Investigadores afirman que hay que crear “reservistas” de laboratorio para responder más rápidamente a la próxima pandemia
- Estudio encuentra que los profesionales sanitarios mostraron mayor interés en tecnologías POC durante la pandemia
- Plataforma de análisis de bajo costo para la COVID-19 combina sensibilidad de la PCR y velocidad de pruebas de antígeno
- Prueba de sangre por punción digital identifica inmunidad a la COVID-19
- Kit de prueba rápida determina inmunidad contra la COVID-19 y sus variantes
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásPatología
ver canal
Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
La terapia celular tiene un gran potencial en el tratamiento de enfermedades como el cáncer, las enfermedades inflamatorias y los trastornos degenerativos crónicos mediante la manipulación o el reemplazo... Más
Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
La tecnología de biopsia líquida, que se basa en análisis de sangre para la detección temprana del cáncer y el seguimiento de la carga oncológica en los pacientes,... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más