LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Algoritmo de aprendizaje automático para la identificación de partículas individuales de virus podría conducir a una prueba para la COVID-19 más rápida y exacta

Por el equipo editorial de LabMedica en español
Actualizado el 01 Dec 2020
Print article
Imagen: Detecciones de partículas individuales de virus utilizando un nanoporo de estado sólido (Fotografía cortesía de la Universidad de Osaka)
Imagen: Detecciones de partículas individuales de virus utilizando un nanoporo de estado sólido (Fotografía cortesía de la Universidad de Osaka)
Un sistema nuevo para la identificación de un solo virión de patógenos respiratorios comunes que utiliza un algoritmo de aprendizaje automático, entrenado en cambios en la corriente a través de los nanoporos de silicio, puede conducir a pruebas de detección rápidas y exactas para enfermedades como la COVID-19 y la influenza.

Científicos de la Universidad de Osaka (Suita, Japón), presentaron un sistema nuevo que utiliza nanoporos de silicio lo suficientemente sensibles como para detectar incluso una sola partícula de virus cuando se combina con un algoritmo de aprendizaje automático. En este método, una capa de nitruro de silicio de solo 50 nm de espesor suspendida en una oblea de silicio tiene pequeños nanoporos agregados, que tienen solo 300 nm de diámetro. Cuando se aplica una diferencia de voltaje a la solución a cada lado de la oblea, los iones viajan a través de los nanoporos en un proceso llamado electroforesis. El movimiento de los iones puede ser monitoreado por la corriente que generan, y cuando una partícula viral ingresa a un nanoporo, bloquea el paso de algunos de los iones, lo que lleva a una caída transitoria de la corriente. Cada inmersión refleja las propiedades físicas de la partícula, como el volumen, la carga superficial y la forma, por lo que se pueden utilizar para identificar el tipo de virus.

La variación natural en las propiedades físicas de las partículas de virus había obstaculizado previamente la implementación de este método. Sin embargo, utilizando el aprendizaje automático, el equipo construyó un algoritmo de clasificación entrenado con señales de virus conocidos para determinar la identidad de nuevas muestras. La computadora puede discriminar las diferencias en las formas de onda de la corriente eléctrica que no pueden ser identificadas por los ojos humanos, lo que permite una clasificación de virus altamente exacta. Además del coronavirus, el sistema se probó con patógenos similares: virus sincitial respiratorio, adenovirus, influenza A e influenza B. El equipo cree que los coronavirus son especialmente adecuados para esta técnica, ya que sus proteínas externas en punta pueden incluso permitir que diferentes cepas serán clasificadas por separado. En comparación con otras pruebas virales rápidas como la reacción en cadena de la polimerasa o los cribados basados en anticuerpos, el nuevo método es mucho más rápido y no requiere reactivos costosos, lo que puede conducir a pruebas de diagnóstico mejoradas para partículas virales emergentes que causan enfermedades infecciosas como la COVID-19.

“A través de la combinación de la detección de partículas individuales con nanoporos con la inteligencia artificial, pudimos lograr una identificación altamente exacta de múltiples especies virales”, dijo el autor principal, Makusu Tsutsui.

“Este trabajo ayudará con el desarrollo de un kit de análisis de virus que superará a los métodos de inspección viral convencionales”, agregó el último autor, Tomoji Kawai.

Enlace relacionado:
Universidad de Osaka

Miembro Oro
HISOPOS DE FIBRA FLOCADA
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Auto Clinical Chemistry Analyzer
cobas c 703
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.