Un biosensor usa CRIPR-Cas9 para detectar secuencias objetivo en el ADN
Por el equipo editorial de LabMedica en español Actualizado el 09 Apr 2019 |

Imagen: Un primer plano del dispositivo CRISPR-Chip (Fotografía cortesía del Instituto de Posgrado Keck).
Un equipo de ingenieros biomédicos ha desarrollado y ensayado un dispositivo biosensor basado en grafeno que utiliza la tecnología CRISPR/Cas9 para permitir la detección digital de una secuencia de ADN objetivo dentro del material genómico intacto.
CRISPR/Cas9 es considerado como la técnica de vanguardia de la biología molecular. Los CRISPR (repeticiones palindrómicas cortas agrupadas regularmente interpuestas) son segmentos de ADN procariótico que contienen repeticiones cortas de secuencias de bases. Cada repetición es seguida por segmentos cortos de “ADN espaciador” de exposiciones previas a un virus o plásmido bacteriano. Desde 2013, el sistema CRISPR/Cas9 se utiliza en la investigación para la edición de genes (agregar, interrumpir o cambiar la secuencia de genes específicos) y la regulación de genes. Al administrar la enzima Cas9 y los ARN guía adecuados (sgARN) a una célula, el genoma del organismo se puede cortar en cualquier ubicación deseada. El sistema convencional CRISPR/Cas9 de Streptococcus pyogenes se compone de dos partes: la enzima Cas9, que rompe la molécula de ADN y las guías de ARN específicas que guían la proteína Cas9 al gen objetivo en la cadena de ADN.
En contraste con los métodos clásicos para la detección de ácidos nucleicos, que requieren muchos reactivos y una instrumentación costosa y voluminosa, el dispositivo “CRISPR-Chip” desarrollado por investigadores de la Universidad de California, Berkeley (EUA) y el Instituto de Posgrado Keck (Claremont, CA, EUA) explota la capacidad de selección de genes de la proteína asociada a CRISPR 9 (Cas9), desactivada catalíticamente, acomplejada con un ARN de guía única, específico e inmovilizado en un campo basado en un transistor de efecto de campo de grafeno. Esto creó un dispositivo de prueba de ácidos nucleicos sin etiqueta cuya señal de salida se podía medir utilizando un simple lector de mano.
Mecánicamente, el complejo CRISPR localizó el sitio de ADN objetivo en el genoma, se unió a él y provocó un cambio en la conductancia eléctrica del grafeno, que, a su vez, cambió las características eléctricas del transistor. Estos cambios fueron detectados con un dispositivo de mano.
Los investigadores utilizaron el CRISPR–Chip para analizar las muestras de ADN recolectadas de líneas celulares HEK293T que expresaban una proteína azul fluorescente, y muestras clínicas de ADN con dos mutaciones definidas en los exones comúnmente eliminados en individuos con distrofia muscular de Duchenne. En presencia de ADN genómico que contiene el gen objetivo, CRISPR-Chip generó, en 15 minutos y sin la necesidad de amplificación, un aumento significativo en la señal de salida en relación con las muestras que carecen de la secuencia objetivo.
“Hemos desarrollado el primer transistor que utiliza CRISPR para buscar posibles mutaciones en su genoma”, dijo la autora principal, la Dra. Kiana Aran, profesora asistente de diagnóstico médico y terapéutica en el Instituto de Posgrado Keck. “Usted simplemente pone su muestra de ADN purificado en el chip, le permite a CRISPR realizar la búsqueda y el transistor de grafeno informa el resultado de esta búsqueda en minutos. La supersensibilidad del grafeno nos permitió detectar las actividades de búsqueda de ADN de CRISPR. CRISPR trajo la selectividad, los transistores de grafeno trajeron la sensibilidad y, juntos, pudimos hacer esta detección sin PCR ni amplificación. La combinación de la nanoelectrónica moderna con la biología moderna abre una nueva puerta para obtener acceso a nueva información biológica que antes no era accesible”.
El dispositivo CRISPR-Chip se describió en la edición digital del 25 de marzo de 2019 de la revista Nature Biomedical Engineering.
Enlace relacionado:
Universidad de California, Berkeley
Instituto de Posgrado Keck
CRISPR/Cas9 es considerado como la técnica de vanguardia de la biología molecular. Los CRISPR (repeticiones palindrómicas cortas agrupadas regularmente interpuestas) son segmentos de ADN procariótico que contienen repeticiones cortas de secuencias de bases. Cada repetición es seguida por segmentos cortos de “ADN espaciador” de exposiciones previas a un virus o plásmido bacteriano. Desde 2013, el sistema CRISPR/Cas9 se utiliza en la investigación para la edición de genes (agregar, interrumpir o cambiar la secuencia de genes específicos) y la regulación de genes. Al administrar la enzima Cas9 y los ARN guía adecuados (sgARN) a una célula, el genoma del organismo se puede cortar en cualquier ubicación deseada. El sistema convencional CRISPR/Cas9 de Streptococcus pyogenes se compone de dos partes: la enzima Cas9, que rompe la molécula de ADN y las guías de ARN específicas que guían la proteína Cas9 al gen objetivo en la cadena de ADN.
En contraste con los métodos clásicos para la detección de ácidos nucleicos, que requieren muchos reactivos y una instrumentación costosa y voluminosa, el dispositivo “CRISPR-Chip” desarrollado por investigadores de la Universidad de California, Berkeley (EUA) y el Instituto de Posgrado Keck (Claremont, CA, EUA) explota la capacidad de selección de genes de la proteína asociada a CRISPR 9 (Cas9), desactivada catalíticamente, acomplejada con un ARN de guía única, específico e inmovilizado en un campo basado en un transistor de efecto de campo de grafeno. Esto creó un dispositivo de prueba de ácidos nucleicos sin etiqueta cuya señal de salida se podía medir utilizando un simple lector de mano.
Mecánicamente, el complejo CRISPR localizó el sitio de ADN objetivo en el genoma, se unió a él y provocó un cambio en la conductancia eléctrica del grafeno, que, a su vez, cambió las características eléctricas del transistor. Estos cambios fueron detectados con un dispositivo de mano.
Los investigadores utilizaron el CRISPR–Chip para analizar las muestras de ADN recolectadas de líneas celulares HEK293T que expresaban una proteína azul fluorescente, y muestras clínicas de ADN con dos mutaciones definidas en los exones comúnmente eliminados en individuos con distrofia muscular de Duchenne. En presencia de ADN genómico que contiene el gen objetivo, CRISPR-Chip generó, en 15 minutos y sin la necesidad de amplificación, un aumento significativo en la señal de salida en relación con las muestras que carecen de la secuencia objetivo.
“Hemos desarrollado el primer transistor que utiliza CRISPR para buscar posibles mutaciones en su genoma”, dijo la autora principal, la Dra. Kiana Aran, profesora asistente de diagnóstico médico y terapéutica en el Instituto de Posgrado Keck. “Usted simplemente pone su muestra de ADN purificado en el chip, le permite a CRISPR realizar la búsqueda y el transistor de grafeno informa el resultado de esta búsqueda en minutos. La supersensibilidad del grafeno nos permitió detectar las actividades de búsqueda de ADN de CRISPR. CRISPR trajo la selectividad, los transistores de grafeno trajeron la sensibilidad y, juntos, pudimos hacer esta detección sin PCR ni amplificación. La combinación de la nanoelectrónica moderna con la biología moderna abre una nueva puerta para obtener acceso a nueva información biológica que antes no era accesible”.
El dispositivo CRISPR-Chip se describió en la edición digital del 25 de marzo de 2019 de la revista Nature Biomedical Engineering.
Enlace relacionado:
Universidad de California, Berkeley
Instituto de Posgrado Keck
Últimas Diagnóstico Molecular noticias
- Primera prueba que utiliza microARN para predecir toxicidad de terapia contra el cáncer
- Ensayo basado en células proporciona detección sensible y específica de autoanticuerpos en desmielinización
- Novedosa tecnología en POC ofrece resultados precisos del VIH en minutos
- Análisis de sangre descarta riesgo futuro de demencia
- Prueba de dímero D puede identificar pacientes con mayor riesgo de embolia pulmonar
- Nuevos biomarcadores mejoran la detección temprana y seguimiento de la lesión renal
- Inmunoensayos de quimioluminiscencia respaldan diagnóstico de Alzheimer
- Análisis de sangre identifica múltiples biomarcadores para diagnóstico rápido de lesiones de médula espinal
- Análisis de sangre muy preciso diagnostica Alzheimer y mide progresión de demencia
- Prueba sencilla basada en PCR de ADN permite tratamiento personalizado de vaginosis bacteriana
- Prueba de diagnóstico detiene transmisión de hepatitis B de madre a hijo
- Simple prueba de orina podría ayudar a evitar exploraciones invasivas para cáncer de riñón
- Nueva prueba para cáncer de intestino mejorará detección temprana
- Prueba refinada mejora diagnóstico de enfermedad de Parkinson
- Nuevo método diagnostica rápidamente riesgo de ECV mediante análisis molecular de sangre
- Análisis de sangre muestra resultados prometedores para detección temprana de demencia
Canales
Química Clínica
ver canal
Nanotubos de carbono ayudan a construir sensores precisos para monitoreo continuo de la salud
Los sensores actuales pueden medir diversos indicadores de salud, como los niveles de glucosa en sangre. Sin embargo, es necesario desarrollar materiales para sensores más precisos y sensibles que... Más
Dispositivo basado en papel mejora la precisión de prueba del VIH
En las regiones donde el acceso a las clínicas para realizar análisis de sangre rutinarios presenta obstáculos financieros y logísticos, los pacientes con VIH pueden recolectar... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... Más
Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas
La identificación rápida y precisa de microbios patógenos en muestras de pacientes es esencial para el tratamiento eficaz de enfermedades infecciosas agudas, como la sepsis.... MásPatología
ver canal
Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
El adenocarcinoma de pulmón, la forma más común de cáncer de pulmón de células no pequeñas (CPCNP), suele adoptar uno de seis patrones de crecimiento distintos,... Más
Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
Cada año en Estados Unidos, se diagnostican alrededor de 81.000 nuevos casos de cáncer de vejiga, lo que provoca aproximadamente 17.000 muertes al año. El cáncer de vejiga ... MásTecnología
ver canal
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... Más
Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
Los virus representan un importante riesgo para la salud mundial, como lo demuestran las recientes pandemias, lo que hace que la detección e identificación tempranas sean esenciales para... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más