LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Dispositivo portátil POC detecta simultáneamente ARN del SARS-CoV-2 y anticuerpos en saliva

Por el equipo editorial de LabMedica en español
Actualizado el 10 Aug 2022
Print article
Imagen: El sensor eRapid para Covid-19 (Fotografía cortesía de la Universidad de Harvard)
Imagen: El sensor eRapid para Covid-19 (Fotografía cortesía de la Universidad de Harvard)

A medida que la pandemia de COVID-19 avanza, las preguntas que nos hacemos han evolucionado, desde cómo sé si estoy infectado, hasta qué tan fuerte es mi inmunidad, a qué cepa del virus tengo. A medida que surgen nuevas variantes, es probable que sigamos haciéndonos esas preguntas, a menudo al mismo tiempo. Ahora, un nuevo dispositivo de diagnóstico, en desarrollo, podría ofrecer una forma de obtener respuestas a todas ellas en un par de horas sin necesidad de enviar muestras a un laboratorio.

Investigadores del Instituto Wyss de Ingeniería Biológicamente Inspirada en la Universidad de Harvard (Cambridge, MA, EUA), crearon un prototipo de dispositivo de punto de atención que combina la tecnología eRapid y SHERLOCK del instituto de Sherlock Biosciences (Cambridge, MA, EUA), en un solo sistema, del tamaño de una postal que puede detectar simultáneamente la presencia de ARN del SARS-CoV-2 y los anticuerpos contra el virus en la saliva de un paciente, potencialmente junto con muchos otros biomarcadores. Como prototipo, el dispositivo es todavía un modelo preliminar y aún no está listo para su fabricación y distribución a gran escala. Sin embargo, hasta ahora, las señales son prometedoras.

El sistema de microfluidos consta de múltiples depósitos, canales y elementos calefactores para mezclar y transferir sustancias automáticamente dentro del dispositivo prototipo sin necesidad de intervención del usuario. En la primera cámara, la saliva se combina con una enzima que rompe las envolturas externas de los virus para exponer su ARN. Luego, la muestra se bombea a una cámara de reacción, donde se calienta y se mezcla con reactivos de amplificación isotérmica mediada por bucle (LAMP), que amplifican el ARN viral. Después de 30 minutos de amplificación, se agrega a la cámara una mezcla que contiene reactivos SHERLOCK y luego la muestra se bombea a un electrodo eRapid.

En ausencia de material genético del SARS-CoV-2 en la mezcla, las moléculas monocatenarias (ssADN), con biotina unida a ellas, se unen a una molécula llamada ácido nucleico peptídico (ANP) en la superficie del electrodo. Luego, la biotina se une a otra molécula en la mezcla llamada poli-HRP-estreptavidina, lo que hace que una tercera molécula, la tetrametilbencidina (TMB), se precipite de la solución líquida como un sólido. Cuando el TMB sólido cae sobre el electrodo, cambia su conductividad eléctrica. Este cambio se detecta como una diferencia en la cantidad de corriente eléctrica que fluye a través del electrodo, indicando que la muestra está libre de virus. Sin embargo, si hay material genético del SARS-CoV-2, presente en la muestra de saliva, la enzima CRISPR dentro de la mezcla de SHERLOCK lo corta tan bien como el ssADN. Esta acción de corte separa la molécula de biotina del ssADN, de modo que cuando el ssADN se une al ANP, no desencadena la serie de reacciones que hacen que el TMB se precipite en el electrodo. Por lo tanto, la conductividad del electrodo no cambia, lo que indica un resultado positivo de la prueba.

Paralelamente, el equipo personalizó los tres electrodos eRapid restantes colocándolos con diferentes antígenos relacionados con la COVID, contra los cuales los pacientes pueden desarrollar anticuerpos: la subunidad S1 de la proteína Spike (S1), el dominio de unión ribosomal dentro de esa subunidad (S1-RBD) , y la proteína N, que está presente en la mayoría de los coronavirus (N). Si la muestra de saliva de un paciente contiene uno o más de estos anticuerpos, se unen a sus antígenos asociados en los electrodos. Un anticuerpo secundario que se une a la biotina luego se unirá al anticuerpo objetivo, desencadenando la misma reacción de poli-HRP-estreptavidina/TMB y provocando un cambio en la conductividad del electrodo. Los investigadores probaron estos sensores específicos de anticuerpos utilizando muestras de plasma humano de pacientes que previamente habían dado positivo para SARS-CoV-2. El sistema pudo diferenciar entre anticuerpos contra S1, S1-RBD y N, con más del 95 % de exactitud.

Finalmente, el equipo probó los electrodos de anticuerpos y ARN viral combinados usando saliva de pacientes con SARS-CoV-2. Dividieron la saliva en dos porciones, agregando una porción al reservorio de anticuerpos y la segunda porción al reservorio de ARN del dispositivo. Después de dos horas, midieron las lecturas de los electrodos para ver si habían registrado correctamente la presencia de anticuerpos y ARN. El equipo descubrió que los chips multiplexados identificaron correctamente las muestras de anticuerpos y ARN positivos y negativos con una exactitud del 100 %, al mismo tiempo. También era ultrasensible, capaz de detectar la presencia de 0,8 copias por microlitro de ARN. El diseño compacto y de bajo costo del dispositivo prototipo es fácil de usar y minimiza la cantidad de pasos que un paciente debe realizar, reduciendo la posibilidad de error del usuario. Los cartuchos personalizados podrían fabricarse fácilmente para detectar antígenos y anticuerpos de diferentes enfermedades, y podrían colocarse en una carcasa reutilizable y un dispositivo de lectura que el usuario mantendría en su hogar.

“Este diagnóstico puede permitir un monitoreo multiplexado más económico de la infección y la inmunidad en las poblaciones a lo largo del tiempo, a niveles de exactitud que son comparables a las costosas pruebas de laboratorio”, dijo la coautora principal, Devora Najjar, estudiante de posgrado en MIT Media Lab y el Instituto Wyss. “Este enfoque podría mejorar drásticamente la respuesta global a futuras pandemias y también proporcionar información sobre el tratamiento que las personas deberían recibir”.

“Ser capaz de diferenciar fácilmente entre diferentes tipos de anticuerpos es muy beneficioso para determinar si la inmunidad de los pacientes se debe a las vacunas o a la infección, y rastrear la fuerza de esos diferentes niveles de inmunidad a lo largo del tiempo”, dijo Sanjay Sharma Timilsina, Ph.D., un ex becario postdoctoral en el Instituto Wyss, quien ahora es científico principal en Stata DX. “Integrar eso con la detección de ARN viral en una plataforma de diagnóstico multiplexada portátil proporciona una visión integral de la salud de un paciente durante y después de una infección, lo cual es esencial para implementar políticas públicas y estrategias de vacunación”.

“Actualmente, faltan plataformas de diagnóstico de bajo costo que puedan permitir la detección exacta de múltiples clases de moléculas sin necesidad de ir a un laboratorio. Nuestro sistema ofrece lo mejor de ambos mundos: alta exactitud y bajo costo en una plataforma multiplexada, y podría brindar mucho valor tanto a los pacientes como a los médicos en el punto de atención. Además, se adapta fácilmente a una amplia gama de aplicaciones”, dijo Pawan Jolly, Ph.D., científico de planta sénior de Wyss.

Enlaces relacionados:
Universidad de Harvard
Sherlock Biosciences 

 

Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Miembro Oro
MÓDULOS DE SEPARACIÓN DE PERLAS MAGNÉTICAS
MAG and HEATMAG

Print article

Canales

Química Clínica

ver canal
Imagen: El ionizador miniatura impreso en 3D es un componente clave de un espectrómetro de masas (foto cortesía del MIT)

Espectrómetro de masas impreso en 3D para el punto de atención supera a los modelos de última generación

La espectrometría de masas es una técnica precisa para identificar los componentes químicos de una muestra y tiene un potencial significativo para monitorear estados de salud de enfermedades... Más

Diagnóstico Molecular

ver canal
Imagen: un análisis de sangre podría predecir el riesgo de cáncer de pulmón con mayor precisión y reducir el número de escaneos requeridos (foto cortesía de 123RF)

Prueba de sangre predice con precisión el riesgo de cáncer de pulmón y reduce la necesidad de escaneos de TC

El cáncer de pulmón es extremadamente difícil de detectar tempranamente debido a las limitaciones de las tecnologías de detección actuales, que son costosas, a veces... Más

Hematología

ver canal
Imagen: El ensayo de Procleix Arboplex ha recibido la marca CE (foto cortesía de Grifols)

Primera prueba NAT 4 en 1 para el cribado de arbovirus podría reducir el riesgo de infecciones transmitidas por transfusiones

Los arbovirus representan una amenaza emergente para la salud mundial, exacerbada por el cambio climático y el aumento de la conectividad mundial que está facilitando su propagación a nuevas regiones.... Más

Inmunología

ver canal
Imagen: los exosomas pueden ser un biomarcador prometedor para el rechazo celular después del trasplante de órganos (foto cortesía de Nicolas Primola/Shutterstock)

Análisis de sangre para diagnóstico de rechazo celular después de trasplante de órganos podría reemplazar las biopsias quirúrgicas

Los órganos trasplantados enfrentan constantemente el riesgo de ser rechazados por el sistema inmunológico del receptor, que los diferencia de los órganos no propios mediante... Más

Microbiología

ver canal
Imagen: Las innovaciones del analizador DXI 9000 abordan las necesidades de velocidad, confiabilidad, reproducibilidad, calidad y expansión del menú (foto cortesía de Beckman Coulter)

Nuevos ensayos de hepatitis con marcado CE permite la detección temprana de infecciones

Según la Organización Mundial de la Salud (OMS), se estima que 354 millones de personas en todo el mundo padecen hepatitis B o C crónica. Estos virus son las principales causas de... Más

Patología

ver canal
Imagen: Comparación de imágenes de histopatología tradicionales versus los datos en bruto de PARS (foto cortesía de la Universidad de Waterloo)

Sistema de imágenes digitales impulsado por IA podría revolucionar el diagnóstico del cáncer

El proceso de biopsia es importante para confirmar la presencia de cáncer. En la técnica de histopatología convencional, el tejido se extirpa, se corta, se tiñe, se monta en... Más

Tecnología

ver canal
Imagen: el chip optofluídico de nanoporo utilizado en el nuevo sistema de diagnóstico (foto cortesía de UC Santa Cruz)

Nuevo sistema de diagnóstico de laboratorio en un chip iguala la precisión de las pruebas de PCR

Si bien las pruebas de PCR son el estándar de oro en cuanto a precisión para las pruebas de virología, tienen limitaciones como la complejidad, la necesidad de operadores de laboratorio capacitados y tiempos... Más