LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Nueva tecnología de IA supera métodos tradicionales en segmentación de imágenes biomédicas

Por el equipo editorial de LabMedica en español
Actualizado el 29 Nov 2024
Print article
Imagen: La arquitectura general, la entrada y la salida del CelloType (Foto cortesía de Nature Methods: DOI: 10.1038/s41592-024-02513-1)
Imagen: La arquitectura general, la entrada y la salida del CelloType (Foto cortesía de Nature Methods: DOI: 10.1038/s41592-024-02513-1)

La ómica espacial es un campo emergente que integra técnicas de perfilado molecular como la genómica, la transcriptómica y la proteómica con información espacial, lo que permite a los investigadores determinar la ubicación de varias moléculas dentro de las células en tejidos complejos. Este enfoque ofrece información valiosa sobre los mecanismos celulares detrás del desarrollo y la progresión de la enfermedad, lo que es crucial para mejorar los diagnósticos y avanzar en terapias dirigidas, un enfoque central en la investigación traslacional. La ómica espacial permite el estudio de enfermedades como el cáncer y la enfermedad renal crónica al revelar cómo las interacciones celulares y los microambientes influyen en la progresión de la enfermedad y las respuestas terapéuticas. El primer paso para analizar los datos de la ómica espacial implica tareas como la segmentación celular, que define los límites celulares, y la clasificación, que asigna los tipos de células. Los avances recientes en las tecnologías de la ómica espacial permiten el examen de tejidos intactos a nivel celular, lo que proporciona información incomparable sobre la relación entre la arquitectura celular y la función de diferentes tejidos y órganos.

Con el aumento del volumen de datos ómicos espaciales, existe una creciente demanda de herramientas computacionales avanzadas para el análisis. En respuesta, los investigadores del Hospital Infantil de Filadelfia (CHOP, Filadelfia, PA, EUA) han desarrollado una tecnología de inteligencia artificial (IA) llamada CelloType, un modelo integral diseñado para mejorar la precisión de la identificación y clasificación de células en imágenes de tejidos de alto contenido. CHOP participa en proyectos destacados como la Red del Atlas de Tumores Humanos, el Programa del Atlas BioMolecular Humano (HuBMAP) y la iniciativa BRAIN, que utilizan tecnologías similares para mapear la organización espacial de tejidos sanos y enfermos. El modelo CelloType utiliza aprendizaje profundo basado en transformadores, un tipo de IA que automatiza el análisis de datos complejos y de alta dimensión. El aprendizaje profundo permite que el modelo identifique relaciones y contextos complejos, lo que lo hace muy eficaz para tareas de procesamiento de lenguaje natural y análisis de imágenes. El modelo está optimizado para mejorar la precisión en la detección, segmentación y clasificación de células.

En su estudio, los investigadores compararon el rendimiento de CelloType con varios métodos tradicionales que utilizan conjuntos de datos de tejidos tanto animales como humanos. Los enfoques tradicionales suelen seguir un proceso de dos etapas de segmentación seguida de clasificación, que puede ser ineficiente e inexacto. Por el contrario, CelloType emplea una estrategia de aprendizaje multitarea que integra tanto la segmentación como la clasificación en un solo paso, lo que mejora la eficiencia y la precisión. CelloType también superó los métodos de segmentación existentes en diferentes tipos de imágenes, incluidas imágenes naturales, imágenes con luz brillante e imágenes de fluorescencia. Para la clasificación del tipo de célula, el estudio, publicado en Nature Methods, demostró que CelloType superó un modelo compuesto por métodos individuales de última generación y un modelo de segmentación de instancias de alto rendimiento, que utiliza IA para delinear con precisión los objetos en una imagen. Además, utilizando una imagen de tejido multiplexada (un tipo de imagen biomédica avanzada que muestra múltiples biomarcadores en una sola muestra de tejido), los investigadores demostraron cómo CelloType puede realizar una segmentación y clasificación a múltiples escalas de componentes celulares y no celulares dentro de un tejido. Esta capacidad permite un análisis más detallado de estructuras celulares pequeñas y grandes, agilizando significativamente el proceso.

"Estamos apenas empezando a descubrir el potencial de esta tecnología", afirmó el Dr. Kai Tan, autor principal del estudio y profesor del Departamento de Pediatría del CHOP. "Este enfoque podría redefinir la forma en que entendemos los tejidos complejos a nivel celular, allanando el camino para avances transformadores en el ámbito de la atención médica".

Miembro Oro
HISOPOS DE FIBRA FLOCADA
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.