LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

La IA identifica una infección similar a la tifoidea resistente a los medicamentos a partir de imágenes de microscopía

Por el equipo editorial de LabMedica en español
Actualizado el 22 Jul 2024
Print article
Imagen: Micrografía electrónica de barrido mejorada por color que muestra Salmonella typhimurium (rojo) invadiendo células humanas cultivadas (foto cortesía de Rocky Mountain Laboratories, NIAID, NIH)
Imagen: Micrografía electrónica de barrido mejorada por color que muestra Salmonella typhimurium (rojo) invadiendo células humanas cultivadas (foto cortesía de Rocky Mountain Laboratories, NIAID, NIH)

La resistencia a los antimicrobianos se está convirtiendo en un grave problema de salud mundial, lo que hace que muchas infecciones sean cada vez más difíciles de tratar y limita las opciones de tratamiento disponibles. Esta escalada de resistencia plantea la preocupación de que algunas infecciones pronto se vuelvan intratables. Un desafío importante para los proveedores de atención médica es distinguir rápidamente entre organismos que responden a los medicamentos estándar de primera línea y aquellos que son resistentes. Los métodos de prueba tradicionales, que implican cultivar bacterias, probarlas contra varios agentes antimicrobianos y análisis manuales o mecánicos, pueden tardar varios días. Este retraso a menudo conduce a la administración de medicamentos ineficaces, lo que puede causar problemas de salud más graves y contribuir potencialmente al desarrollo de una mayor resistencia a los medicamentos. Los investigadores han demostrado ahora que la inteligencia artificial (IA) puede reducir significativamente el tiempo necesario para diagnosticar con precisión infecciones resistentes a los medicamentos. Han desarrollado un algoritmo capaz de identificar correctamente bacterias resistentes a los medicamentos a partir de imágenes de microscopía.

En una investigación publicada en Nature Communications, el equipo de investigadores de la Universidad de Cambridge (Cambridge, Reino Unido) creó una herramienta de aprendizaje automático que puede identificar a partir de imágenes de microscopía la bacteria Salmonella typhimurium,que es resistente al antibiótico de primera línea ciprofloxacina, sin necesidad de exponer directamente a la bacteria al medicamento. Se sabe que S. Typhimurium causa enfermedades gastrointestinales y similares a la tifoidea, con síntomas como fiebre, fatiga, dolor de cabeza, náuseas, dolor abdominal y estreñimiento o diarrea, que pueden poner en peligro la vida en casos graves. Aunque se pueden tratar con antibióticos, las bacterias están desarrollando cada vez más resistencia a varios fármacos, lo que complica los esfuerzos de tratamiento.

El equipo de investigación utilizó microscopía de alta resolución para estudiar aislados de S. Typhimurium sometidos a diferentes concentraciones de ciprofloxacina, identificando las cinco características de imagen más importantes para diferenciar entre cepas resistentes y susceptibles. Entrenaron un algoritmo de aprendizaje automático para reconocer estas características a partir de los datos de imágenes de 16 muestras. Sorprendentemente, el algoritmo pudo determinar con precisión si las bacterias eran susceptibles o resistentes a la ciprofloxacina sin exposición directa al fármaco, y lo logró utilizando aislamientos cultivados durante solo seis horas, significativamente menos que las 24 horas habituales necesarias para cultivar una muestra con antibióticos.

Aunque sigue siendo necesario aislar la bacteria de una muestra clínica, como sangre, orina o heces, no tener que exponer la bacteria a la ciprofloxacina puede acortar el tiempo total de la prueba de varios días a solo unas pocas horas. Si bien este enfoque tiene limitaciones prácticas y económicas, ilustra el potencial de la IA para avanzar significativamente en la batalla contra la resistencia antimicrobiana. Los investigadores ahora planean ampliar sus estudios para incluir colecciones bacterianas más grandes, con el objetivo de perfeccionar su método para mejorar la velocidad y permitir la detección de resistencia a la ciprofloxacina y otros antibióticos en varias especies bacterianas.

“Dado que este enfoque utiliza imágenes de resolución de célula única, aún no es una solución que pueda desplegarse fácilmente en todas partes. Pero es realmente prometedor que al capturar solo unos pocos parámetros sobre la forma y estructura de la bacteria, puede brindarnos suficiente información para predecir la resistencia a los medicamentos con relativa facilidad”, dijo la Dra. Sushmita Sridhar, quien inició este proyecto mientras era estudiante de doctorado. en el Departamento de Medicina de la Universidad de Cambridge. “Lo que sería realmente importante, particularmente en un contexto clínico, sería poder tomar una muestra compleja (por ejemplo, sangre, orina o esputo) e identificar la susceptibilidad y la resistencia directamente a partir de ella. Ese es un problema mucho más complicado y uno que realmente no se ha resuelto en absoluto, ni siquiera en el diagnóstico clínico en un hospital. Si pudiéramos encontrar una manera de hacerlo, podríamos reducir el tiempo necesario para identificar la resistencia a los medicamentos y a un costo mucho menor. Eso podría ser verdaderamente transformador”.

Enlaces relacionados:
Universidad de Cambridge

Miembro Oro
HISOPOS DE FIBRA FLOCADA
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Miembro Plata
Total Hemoglobin Monitoring System
GREENCARE Hb
New
H.pylori Test
Humasis H.pylori Card

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.