Herramienta de IA detecta pequeños grupos de proteínas en imágenes de microscopía en tiempo real
Por el equipo editorial de LabMedica en español Actualizado el 06 Jun 2024 |

Más de 55 millones de personas en todo el mundo padecen enfermedades relacionadas con la demencia, como el Alzheimer y el Parkinson. Estas afecciones son causadas por la acumulación de los componentes más pequeños del cuerpo que altera las funciones vitales. Dentro de nuestras células, se producen de forma natural numerosas interacciones e intercambios entre proteínas y otras moléculas, lo que permite que nuestro cuerpo funcione correctamente. Sin embargo, los errores en estos procesos pueden provocar acumulaciones de proteínas que perjudican la funcionalidad, lo que sustenta una variedad de trastornos neurodegenerativos que afectan al cerebro, incluidos el Alzheimer y la demencia. Comprender por qué se produce esta acumulación y cómo tratarla sigue siendo difícil de alcanzar, en gran parte debido a la falta de herramientas adecuadas para estudiar estos fenómenos. Los investigadores han introducido ahora una herramienta innovadora que puede encontrar estos pequeños grupos de proteínas en imágenes de microscopía y conducir a una mejor comprensión y tratamientos de enfermedades como el cáncer, el Alzheimer y el Parkinson.
Científicos de la Universidad de Copenhague (Copenhague, Dinamarca) han desarrollado un algoritmo de aprendizaje automático capaz de observar la agrupación de proteínas en tiempo real bajo un microscopio. Este algoritmo es capaz de identificar y monitorear automáticamente las características críticas de los bloques de construcción agrupados responsables del Alzheimer y otras enfermedades neurodegenerativas, una tarea que antes era inalcanzable. Puede detectar grupos de proteínas tan pequeños como una milmillonésima de metro en imágenes de microscopía y clasificarlos por su forma y tamaño mientras rastrea su desarrollo. La apariencia física de estos grumos influye significativamente en su función y comportamiento dentro del cuerpo, ya sea perjudicial o beneficioso.
En el futuro, este algoritmo simplificará el proceso de descubrir por qué se forman los grumos, ayudando así al desarrollo de nuevos medicamentos y terapias para combatir estos trastornos debilitantes. Los investigadores utilizan activamente esta herramienta en experimentos con moléculas de insulina que, cuando se agrupan, pierden su capacidad de regular eficazmente el azúcar en sangre. La herramienta permite observar cómo cambian estos grupos cuando se exponen a diversos compuestos, allanando el camino para detenerlos o alterarlos potencialmente en formas menos dañinas o más estables. El equipo es optimista sobre el potencial de la herramienta para facilitar el desarrollo de fármacos una vez que estos pequeños componentes básicos se identifiquen con precisión. Anticipan que sus esfuerzos iniciarán la recopilación de conocimientos más completos sobre las formas y funciones de proteínas y moléculas. El algoritmo es accesible como software de código abierto en Internet para que lo utilicen investigadores científicos y otras personas interesadas en explorar la agrupación de proteínas y otras moléculas.
"En sólo unos minutos, nuestro algoritmo resuelve un desafío que llevaría a los investigadores varias semanas. Es de esperar que el hecho de que ahora sea más fácil estudiar imágenes microscópicas de proteínas agrupadas contribuya a nuestro conocimiento y, a largo plazo, conduzca a nuevas terapias para los trastornos cerebrales neurodegenerativos", dijo el doctor Jacob Kæstel-Hansen, quien dirigió el equipo de investigación detrás del algoritmo.
Enlaces relacionados:
Hatzakis Lab
Universidad de Copenhague
Últimas Patología noticias
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más