Integración de IA con tecnología de imagen óptica permite un diagnóstico intraoperatorio rápido
Por el equipo editorial de LabMedica en español Actualizado el 03 Jun 2024 |

El diagnóstico intraoperatorio rápido y preciso es esencial para la cirugía tumoral, ya que guía las decisiones quirúrgicas con precisión. Las evaluaciones intraoperatorias tradicionales, como las secciones congeladas basadas en histología H&E, exigen tiempo, recursos y mano de obra y también plantean preocupaciones sobre el consumo de muestras. D-FFOCT, una tecnología de imágenes ópticas de alta resolución, permite la generación rápida de histología virtual. Los investigadores ahora han desarrollado un flujo de trabajo de diagnóstico intraoperatorio que utiliza algoritmos de aprendizaje profundo para clasificar tumores a partir de imágenes D-FFOCT, ofreciendo un diagnóstico rápido y automatizado para la toma de decisiones quirúrgicas.
Un estudio de cohorte prospectivo realizado por investigadores del Hospital Popular de la Universidad de Pekín (Beijing, China) incluyó 224 muestras de mama obtenidas con D-FFOCT. Esta técnica de imagen no es destructiva y no requiere preparación ni tinción del tejido. Las imágenes D-FFOCT se segmentaron en parches y las diapositivas se asignaron en un conjunto de entrenamiento (182 diapositivas, 10.357 parches) y un conjunto de prueba externo (42 diapositivas, 3.140 parches) según el orden en que se recopilaron. Se empleó un método de validación cruzada quíntuple para entrenar y ajustar el modelo. Un modelo de aprendizaje automático agregó los resultados de la predicción de parches al nivel de diapositiva después de la extracción de características.
El conjunto de pruebas mostró que el modelo funcionó bien a nivel de parche, identificando tipos de tejido mamario con un AUC de 0,926 (IC del 95 %: 0,907–0,943). A nivel de portaobjetos, la precisión diagnóstica alcanzó el 97,62 %, con una sensibilidad del 96,88 % y una especificidad del 100 %. La precisión no difirió significativamente entre los distintos subtipos moleculares y tipos de tumores histológicos de cáncer de mama. Los mapas de calor de visualización demostraron que los modelos de aprendizaje profundo podían identificar características correspondientes a grupos de células metabólicamente activas en imágenes D-FFOCT, alineándose con evaluaciones de expertos. Este enfoque de análisis de imágenes podría extenderse potencialmente a varios tipos de tumores, dadas las características conservadas detectadas en el modelo. En un experimento de simulación de márgenes, el proceso de diagnóstico duró unos tres minutos y el modelo de aprendizaje profundo logró una alta precisión del 95,24%.
Con base en los resultados, el estudio propuso un flujo de trabajo de diagnóstico de cáncer intraoperatorio que integra D-FFOCT con un modelo de aprendizaje profundo. En el diagnóstico de márgenes intraoperatorio simulado, el flujo de trabajo redujo sustancialmente el tiempo de diagnóstico aproximadamente diez veces en comparación con los métodos tradicionales y demostró ser altamente rentable en términos de mano de obra. No se destruyó ningún tejido durante el análisis y la obtención de imágenes ópticas. En general, este flujo de trabajo ofrece una solución transparente para un diagnóstico intraoperatorio rápido y preciso, que potencialmente puede guiar las decisiones quirúrgicas de forma eficaz.
Enlaces relacionados:
Hospital Popular de la Universidad de Pekín
Últimas Patología noticias
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más