LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Integración de IA con tecnología de imagen óptica permite un diagnóstico intraoperatorio rápido

Por el equipo editorial de LabMedica en español
Actualizado el 03 Jun 2024
Print article
Imagen: Imágenes de carcinoma ductal invasivo, carcinoma mucinoso y carcinoma papilar (Foto cortesía de Science China Press)
Imagen: Imágenes de carcinoma ductal invasivo, carcinoma mucinoso y carcinoma papilar (Foto cortesía de Science China Press)

El diagnóstico intraoperatorio rápido y preciso es esencial para la cirugía tumoral, ya que guía las decisiones quirúrgicas con precisión. Las evaluaciones intraoperatorias tradicionales, como las secciones congeladas basadas en histología H&E, exigen tiempo, recursos y mano de obra y también plantean preocupaciones sobre el consumo de muestras. D-FFOCT, una tecnología de imágenes ópticas de alta resolución, permite la generación rápida de histología virtual. Los investigadores ahora han desarrollado un flujo de trabajo de diagnóstico intraoperatorio que utiliza algoritmos de aprendizaje profundo para clasificar tumores a partir de imágenes D-FFOCT, ofreciendo un diagnóstico rápido y automatizado para la toma de decisiones quirúrgicas.

Un estudio de cohorte prospectivo realizado por investigadores del Hospital Popular de la Universidad de Pekín (Beijing, China) incluyó 224 muestras de mama obtenidas con D-FFOCT. Esta técnica de imagen no es destructiva y no requiere preparación ni tinción del tejido. Las imágenes D-FFOCT se segmentaron en parches y las diapositivas se asignaron en un conjunto de entrenamiento (182 diapositivas, 10.357 parches) y un conjunto de prueba externo (42 diapositivas, 3.140 parches) según el orden en que se recopilaron. Se empleó un método de validación cruzada quíntuple para entrenar y ajustar el modelo. Un modelo de aprendizaje automático agregó los resultados de la predicción de parches al nivel de diapositiva después de la extracción de características.

El conjunto de pruebas mostró que el modelo funcionó bien a nivel de parche, identificando tipos de tejido mamario con un AUC de 0,926 (IC del 95 %: 0,907–0,943). A nivel de portaobjetos, la precisión diagnóstica alcanzó el 97,62 %, con una sensibilidad del 96,88 % y una especificidad del 100 %. La precisión no difirió significativamente entre los distintos subtipos moleculares y tipos de tumores histológicos de cáncer de mama. Los mapas de calor de visualización demostraron que los modelos de aprendizaje profundo podían identificar características correspondientes a grupos de células metabólicamente activas en imágenes D-FFOCT, alineándose con evaluaciones de expertos. Este enfoque de análisis de imágenes podría extenderse potencialmente a varios tipos de tumores, dadas las características conservadas detectadas en el modelo. En un experimento de simulación de márgenes, el proceso de diagnóstico duró unos tres minutos y el modelo de aprendizaje profundo logró una alta precisión del 95,24%.

Con base en los resultados, el estudio propuso un flujo de trabajo de diagnóstico de cáncer intraoperatorio que integra D-FFOCT con un modelo de aprendizaje profundo. En el diagnóstico de márgenes intraoperatorio simulado, el flujo de trabajo redujo sustancialmente el tiempo de diagnóstico aproximadamente diez veces en comparación con los métodos tradicionales y demostró ser altamente rentable en términos de mano de obra. No se destruyó ningún tejido durante el análisis y la obtención de imágenes ópticas. En general, este flujo de trabajo ofrece una solución transparente para un diagnóstico intraoperatorio rápido y preciso, que potencialmente puede guiar las decisiones quirúrgicas de forma eficaz.

Enlaces relacionados:
Hospital Popular de la Universidad de Pekín

Miembro Oro
HISOPOS DE FIBRA FLOCADA
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2
New
Auto Clinical Chemistry Analyzer
cobas c 703

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.