LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Red neuronal reconoce cáncer de mama en muestras histológicas con 100 % de precisión

Por el equipo editorial de LabMedica en español
Actualizado el 20 Feb 2024
Print article
Imagen: La red neuronal "atenta" reconoce el cáncer de mama con 96 % de precisión (Fotografía cortesía de la Universidad RUDN)
Imagen: La red neuronal "atenta" reconoce el cáncer de mama con 96 % de precisión (Fotografía cortesía de la Universidad RUDN)

La probabilidad de un resultado favorable para una paciente con cáncer de mama está muy influenciada por la etapa en la que se diagnostica el cáncer. El examen histológico es el punto de referencia para el diagnóstico, pero su confiabilidad puede verse afectada por interpretaciones subjetivas y la calidad de la muestra de tejido. Las imprecisiones en estos exámenes pueden conducir a diagnósticos incorrectos. Ahora, un equipo de matemáticos ha desarrollado un modelo de aprendizaje automático que mejora significativamente la precisión de la identificación del cáncer en imágenes histológicas. Lo más destacado de este modelo es la incorporación de un módulo adicional que aumenta la capacidad de "atención" de la red neuronal, permitiéndole alcanzar una precisión casi perfecta.

Los matemáticos de la Universidad RUDN (Moscú, Rusia) realizaron pruebas en varias redes neuronales convolucionales y las complementaron con dos módulos de atención convolucionales. Estos módulos son cruciales para detectar objetos dentro de las imágenes. El modelo se sometió a entrenamiento y pruebas utilizando el conjunto de datos BreakHis, que comprende casi 10.000 imágenes histológicas a varias escalas, procedentes de 82 pacientes. El rendimiento más impresionante provino de un modelo que combinó la red convolucional DenseNet211 con los módulos de atención, logrando una notable tasa de precisión del 99,6 %. El equipo de investigación observó que la detección de formaciones cancerosas se ve afectada por la escala de la imagen. Esto se debe a que las imágenes difieren en calidad en distintos niveles de zoom y las formaciones cancerosas aparecen de manera diferente. Por lo tanto, durante la aplicación práctica, seleccionar la escala adecuada para el análisis de imágenes debe ser una consideración crítica.

“La clasificación informática de las imágenes histológicas reducirá la carga de los médicos y aumentará la precisión de las pruebas. Estas tecnologías mejorarán el tratamiento y el diagnóstico del cáncer de mama. Los métodos de aprendizaje profundo han mostrado resultados prometedores en los problemas de análisis de imágenes médicas en los últimos años”, afirmó Ammar Muthanna, Ph.D., director del Centro Científico para el Modelado de Redes Inalámbricas 5G de la Universidad RUDN. “Los módulos de atención del modelo mejoraron la extracción de características y el desempeño general del modelo. Con su ayuda, el modelo se centró en áreas importantes de la imagen y resaltó la información necesaria. Muestra la importancia de los mecanismos de atención en el análisis de imágenes médicas”.

Enlaces relacionados:
Universidad RUDN

Miembro Oro
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.