Modelo de IA analiza células en muestras de tejido sin necesidad de un patólogo capacitado
Por el equipo editorial de LabMedica en español Actualizado el 11 Apr 2023 |

La información rápida y precisa sobre el tejido operado es crucial para guiar los siguientes pasos de un cirujano durante la cirugía del cáncer. En los casos en que los tumores sólidos están presentes en un paciente con cáncer, el cirujano generalmente envía una muestra de biopsia a un patólogo para una evaluación rápida. El patólogo debe determinar, entre otras cosas, si el tejido está sano, el grado de propagación del cáncer a los órganos, etc. El proceso de diagnóstico intraoperatorio tradicional es laborioso, requiere mucho tiempo y muchos recursos. Ahora, los científicos han desarrollado una nueva técnica que puede realizar un análisis confiable de tumores sólidos en tan solo 30 minutos, sin necesidad de un patólogo capacitado.
Un equipo de investigación del Instituto Max Planck para la Ciencia de la Luz (MPL, Erlangen, Alemania) ha creado una técnica novedosa que permite a los médicos analizar células en muestras de tejido de pacientes con cáncer de forma rápida y precisa, sin necesidad de la experiencia de un patólogo capacitado. El equipo utilizó inteligencia artificial (IA) para evaluar los datos generados por su método. Para su estudio, los investigadores utilizaron un molinillo de tejidos para separar rápidamente las muestras de biopsia hasta el nivel de una sola célula. Posteriormente, estas células individuales se analizaron mediante citometría de deformabilidad en tiempo real (RT-DC), un método sin etiquetas y capaz de examinar las propiedades físicas de hasta 1.000 células por segundo. Este método es 36.000 veces más rápido que los métodos convencionales utilizados para evaluar la deformabilidad celular.
La RT-DC implica empujar células individuales a alta velocidad a través de un canal microscópico, donde sufren deformación debido al estrés y la presión. Se capturan imágenes de cada célula, que luego los científicos utilizan para determinar una variedad de características físicas de las células, incluido su tamaño, forma y deformabilidad. Sin embargo, realizar únicamente de un análisis físico de las células es insuficiente para fines de diagnóstico. Los médicos deben ser capaces de interpretar estos resultados de forma independiente, sin necesidad de contar con la experiencia de un patólogo o médico capacitado.
Por lo tanto, para lograr esto, los investigadores combinaron el molinillo de tejidos y RT-DC con IA. El modelo de IA evalúa los extensos y complejos conjuntos de datos obtenidos a través del análisis RT-DC y evalúa rápidamente si una muestra de biopsia contiene tejido canceroso o no. Además, el uso de la IA confirmó la importancia de la deformabilidad celular como biomarcador, ya que los resultados fueron notablemente inferiores cuando la IA no se entrenó con esta variable.
En general, el procedimiento completo, que incluye el procesamiento de muestras y el análisis de datos automatizado, se puede ejecutar en menos de 30 minutos, lo que lo hace lo suficientemente rápido como para realizarlo durante la cirugía. Una ventaja significativa de este método es que no requiere la disponibilidad inmediata de un patólogo para analizar la muestra. Esto es particularmente ventajoso ya que las consultas intraoperatorias pueden no ser siempre factibles y, en algunos casos, las muestras solo pueden examinarse después de que se completa la cirugía. Según los resultados, es posible que los pacientes deban regresar al hospital para someterse a una cirugía adicional, a menudo días después. Además de detectar la presencia de tumores, esta técnica también se utilizó para detectar la inflamación de los tejidos en un modelo de enfermedad inflamatoria intestinal (EII). En el futuro, este método podría ayudar a los médicos a evaluar la gravedad de la enfermedad o distinguir entre varios tipos de EII. El equipo tiene como objetivo eventualmente hacer la transición de su método a un entorno clínico para respaldar o incluso suplantar el análisis patológico tradicional.
“Este fue un estudio de prueba de concepto: el método pudo determinar con precisión la presencia de tejido tumoral en nuestras muestras muy rápidamente”, dijo la Dra. Despina Soteriou, miembro del equipo de investigación. “El siguiente paso será continuar trabajando muy de cerca con los médicos para determinar cómo este método puede traducirse mejor a la clínica”.
Enlaces relacionados:
MPL
Últimas Patología noticias
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más