Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

IA combinada con imágenes infrarrojas clasifica automáticamente los tumores

Por el equipo editorial de LabMedica en español
Actualizado el 17 Feb 2023
Print article
Imagen: La IA con imágenes infrarrojas permite diagnósticos precisos de cáncer de colon (Fotografía cortesía de Pexels)
Imagen: La IA con imágenes infrarrojas permite diagnósticos precisos de cáncer de colon (Fotografía cortesía de Pexels)

En los últimos años, ha habido un avance masivo en los tratamientos disponibles para el cáncer de colon. Para garantizar que estas terapias, como las inmunoterapias, sean efectivas, es importante diagnosticar con precisión al paciente individual para brindar un tratamiento específicamente diseñado. Ahora, los investigadores han emparejado la inteligencia artificial (IA) con imágenes infrarrojas (IR) para desarrollar un método automatizado y preciso para diagnosticar el cáncer de colon y adaptar los tratamientos al paciente. Esta técnica automatizada y sin etiquetas complementa los métodos existentes para el análisis de muestras de tejido.

En el transcurso de los últimos años, un equipo de investigación del Centro de Diagnóstico de Proteínas (PRODI) de la Universidad Ruhr de Bochum (Bochum, Alemania) ha estado trabajando en la creación de un nuevo método de imagen digital conocido como imágenes IR sin etiquetas. Este método mide la composición genómica y proteómica del tejido examinado, proporcionando información molecular basada en los espectros infrarrojos. Luego, la información se decodifica utilizando IA y se muestra como imágenes en color falso utilizando métodos de análisis de imágenes del campo del aprendizaje profundo.

El equipo de PRODI demostró exitosamente que mediante el uso de redes neuronales profundas era posible determinar de forma eficaz el estado de los microsatélites, un parámetro relevante desde el punto de vista pronóstico y terapéutico, en el cáncer de colon. En este proceso, la muestra de tejido pasa por un proceso automatizado estandarizado e independiente del usuario y permite la clasificación diferencial espacialmente resuelta del tumor en una hora. Por otro lado, el diagnóstico clásico se utiliza para determinar el estado de los microsatélites, ya sea mediante inmunotinción compleja de varias proteínas o mediante análisis de ADN.

Las opciones de terapia en constante mejora han hecho que la determinación rápida y sin complicaciones de tales biomarcadores sea extremadamente importante. Basándose en datos microscópicos de IR, los investigadores modificaron, optimizaron y entrenaron redes neuronales para establecer diagnósticos sin etiquetas. A diferencia de la inmunotinción, el nuevo método no necesita colorantes y es mucho más rápido que el análisis de ADN.

"Pudimos demostrar que la precisión de las imágenes IR para determinar el estado de los microsatélites se acerca al método más común utilizado en la clínica, la inmunotinción", dijo la estudiante de doctorado Stephanie Schörner.

Enlaces relacionados:
Universidad Ruhr de Bochum  

Miembro Oro
CONTROL DE CALIDAD DE TROPONINA T
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
High Performance Centrifuge
CO336/336R

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.