Algoritmo de IA de autoaprendizaje utiliza imágenes patológicas para diagnosticar enfermedades raras
Por el equipo editorial de LabMedica en español Actualizado el 13 Oct 2022 |

Las enfermedades raras suelen ser difíciles de diagnosticar y predecir el mejor curso de tratamiento puede ser un desafío para los médicos. Las bases de datos electrónicas modernas pueden almacenar una inmensa cantidad de registros digitales e imágenes de referencia, particularmente en patología a través de imágenes de diapositivas completas (WSI). Sin embargo, el tamaño en gigapíxeles de cada WSI individual y el número cada vez mayor de imágenes en grandes repositorios significa que la búsqueda y recuperación de WSI puede ser lenta y complicada. Como resultado, la escalabilidad sigue siendo un obstáculo importante para el uso eficiente. Para resolver este problema, los investigadores ahora han desarrollado un algoritmo de aprendizaje profundo que puede enseñarse a sí mismo a aprender características que luego se pueden usar para encontrar casos similares en grandes depósitos de imágenes de patología.
Conocida como SISH (siglas en inglés para búsqueda de imágenes autosupervisadas para histología), la nueva herramienta desarrollada por investigadores del Hospital Brigham and Women's (Boston, MA, EUA), actúa como un motor de búsqueda de imágenes patológicas y tiene muchas aplicaciones potenciales, incluida la identificación de enfermedades raras y ayudar a los médicos a determinar qué pacientes tienen probabilidades de responder a terapias similares. El algoritmo se enseña a sí mismo a aprender representaciones de características que se pueden usar para encontrar casos con características análogas en patología a una velocidad constante, independientemente del tamaño de la base de datos.
En su estudio, los investigadores probaron la velocidad y la capacidad de SISH para recuperar información de subtipo de enfermedad interpretable para cánceres comunes y raros. El algoritmo recuperó con éxito imágenes con velocidad y precisión de una base de datos de decenas de miles de imágenes de diapositivas completas de más de 22.000 casos de pacientes, con más de 50 tipos de enfermedades diferentes y más de una docena de sitios anatómicos. La velocidad de recuperación superó a otros métodos en muchos escenarios, incluida la recuperación de subtipos de enfermedades, particularmente cuando el tamaño de la base de datos de imágenes se amplió a miles de imágenes. Incluso mientras los depósitos se expandían en tamaño, SISH aún podía mantener una velocidad de búsqueda constante.
Sin embargo, el algoritmo de autoaprendizaje tiene algunas limitaciones, incluido un gran requerimiento de memoria, una conciencia limitada del contexto dentro de grandes diapositivas de tejido y el hecho de que está limitado a una sola modalidad de imagen. En general, el algoritmo demostró la capacidad de recuperar imágenes de manera eficiente independientemente del tamaño del repositorio y en diversos conjuntos de datos. También demostró capacidad en el diagnóstico de tipos de enfermedades raras y la capacidad de servir como motor de búsqueda para reconocer ciertas regiones de imágenes que pueden ser relevantes para el diagnóstico. Este trabajo puede informar en gran medida el diagnóstico, pronóstico y análisis de enfermedades futuras.
"Demostramos que nuestro sistema puede ayudar con el diagnóstico de enfermedades raras y encontrar casos con patrones morfológicos similares sin la necesidad de anotaciones manuales y grandes conjuntos de datos para el entrenamiento supervisado", dijo el autor principal Faisal Mahmood, PhD, en el Departamento de Patología de Brigham. “Este sistema tiene el potencial de mejorar la capacitación en patología, la subtipificación de enfermedades, la identificación de tumores y la identificación de morfologías raras”.
“A medida que el tamaño de las bases de datos de imágenes continúa creciendo, esperamos que SISH sea útil para facilitar la identificación de enfermedades”, agregó Mahmood. "Creemos que una dirección futura importante en esta área es la recuperación multimodal de casos, que implica el uso conjunto de datos de patología, radiología, genómica y registros médicos electrónicos para encontrar casos de pacientes similares".
Enlaces relacionados:
Hospital Brigham and Women's
Últimas Patología noticias
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más