LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Roche mejora la atención de salud personalizada con el desarrollo de algoritmos que usan inteligencia artificial para el análisis de imágenes

Por el equipo editorial de LabMedica en español
Actualizado el 30 Jun 2020
Print article
Imagen: análisis de imágenes uPath PD-L1 (SP263) (Fotografía cortesía de Roche)
Imagen: análisis de imágenes uPath PD-L1 (SP263) (Fotografía cortesía de Roche)
Roche (Basilea, Suiza) ha anunciado el lanzamiento CE-IVD de su algoritmo de patología digital automatizado, el análisis de imágenes uPath PD-L1 (SP263) para el cáncer de pulmón de células no pequeñas (NSCLC).

Roche entrega la solución de patología digital de extremo a extremo, desde la coloración de tejidos hasta la producción de imágenes digitales de alta calidad que se pueden evaluar de manera confiable utilizando algoritmos automáticos de análisis de imágenes clínicas. El conjunto de algoritmos de análisis de imágenes uPath de Roche para el soporte de decisiones de patología ofrece herramientas de análisis de imágenes listas para usar, que proporcionan análisis rápidos, consistentes y automatizados para que los patólogos puedan evaluar de forma rápida, exacta y confiable la inmunohistoquímica/hibridación in situ y las láminas coloreadas con hematoxilina y eosina. Todos los algoritmos en el paquete para el software uPath proporcionarán análisis de las imágenes en las láminas escaneadas VENTANA DP 200 coloreadas con un análisis de tejido Roche. Juntos, Roche ofrece una nueva base de su solución de patología digital que permitirá el desarrollo de algoritmos de análisis de imágenes basados en inteligencia artificial que pueden proporcionar a los patólogos más herramientas para mejorar la eficiencia y la precisión.

El análisis de imagen uPath PD-L1 (SP263), para el análisis automatizado de láminas completas del algoritmo NSCLC, utiliza inteligencia artificial para proporcionar, con un solo clic, evaluaciones de imágenes de las láminas escaneadas que son objetivas y reproducibles y tienen el potencial de ayudar al diagnóstico y, en última instancia, opciones de tratamiento dirigido para pacientes. Validado en el ensayo VENTANA PD-L1 (SP263), el algoritmo está listo para usar e integrado en el software empresarial Roche uPath, una plataforma digital universal para la gestión de casos, la colaboración y la presentación de informes. El algoritmo ayudará a los patólogos a determinar rápidamente si los tumores son positivos para el biomarcador PD-L1, destacando las células tumorales coloreadas positiva y negativamente con una superposición visual clara para una referencia fácil. Está destinado al uso de diagnóstico in vitro como una ayuda para el patólogo en la visualización, detección, recuento, revisión y clasificación de tejidos y células de interés clínico en función de la morfología, color, intensidad, tamaño, patrón y forma particulares. Los pacientes con tumores que son positivos para el biomarcador PD-L1 pueden ser elegibles para el tratamiento dirigido.

“Mejorar la consistencia y certeza diagnóstica es crucial para proporcionar diagnósticos más rápidos, de mayor calidad y más exactos a los pacientes con cáncer”, dijo Thomas Schinecker, director ejecutivo de Roche Diagnostics. “Nuestro análisis de imagen uPath PD-L1 (SP263) para el cáncer de pulmón de células no pequeñas es el primer algoritmo CE-IVD PD-L1 de próxima generación en el mercado clínico. Es una gran adición a nuestra creciente suite de patología digital para los ensayos VENTANA que ayudan a los médicos a proporcionar las decisiones de tratamiento más exactas para los pacientes con el tipo más común de cáncer de pulmón”.

Enlace relacionado:
Miembro Oro
CONTROL DE CALIDAD DE TROPONINA T
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
Miembro Plata
Total Hemoglobin Monitoring System
GREENCARE Hb

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.