Roche mejora la atención de salud personalizada con el desarrollo de algoritmos que usan inteligencia artificial para el análisis de imágenes
Por el equipo editorial de LabMedica en español Actualizado el 30 Jun 2020 |

Imagen: análisis de imágenes uPath PD-L1 (SP263) (Fotografía cortesía de Roche)
Roche (Basilea, Suiza) ha anunciado el lanzamiento CE-IVD de su algoritmo de patología digital automatizado, el análisis de imágenes uPath PD-L1 (SP263) para el cáncer de pulmón de células no pequeñas (NSCLC).
Roche entrega la solución de patología digital de extremo a extremo, desde la coloración de tejidos hasta la producción de imágenes digitales de alta calidad que se pueden evaluar de manera confiable utilizando algoritmos automáticos de análisis de imágenes clínicas. El conjunto de algoritmos de análisis de imágenes uPath de Roche para el soporte de decisiones de patología ofrece herramientas de análisis de imágenes listas para usar, que proporcionan análisis rápidos, consistentes y automatizados para que los patólogos puedan evaluar de forma rápida, exacta y confiable la inmunohistoquímica/hibridación in situ y las láminas coloreadas con hematoxilina y eosina. Todos los algoritmos en el paquete para el software uPath proporcionarán análisis de las imágenes en las láminas escaneadas VENTANA DP 200 coloreadas con un análisis de tejido Roche. Juntos, Roche ofrece una nueva base de su solución de patología digital que permitirá el desarrollo de algoritmos de análisis de imágenes basados en inteligencia artificial que pueden proporcionar a los patólogos más herramientas para mejorar la eficiencia y la precisión.
El análisis de imagen uPath PD-L1 (SP263), para el análisis automatizado de láminas completas del algoritmo NSCLC, utiliza inteligencia artificial para proporcionar, con un solo clic, evaluaciones de imágenes de las láminas escaneadas que son objetivas y reproducibles y tienen el potencial de ayudar al diagnóstico y, en última instancia, opciones de tratamiento dirigido para pacientes. Validado en el ensayo VENTANA PD-L1 (SP263), el algoritmo está listo para usar e integrado en el software empresarial Roche uPath, una plataforma digital universal para la gestión de casos, la colaboración y la presentación de informes. El algoritmo ayudará a los patólogos a determinar rápidamente si los tumores son positivos para el biomarcador PD-L1, destacando las células tumorales coloreadas positiva y negativamente con una superposición visual clara para una referencia fácil. Está destinado al uso de diagnóstico in vitro como una ayuda para el patólogo en la visualización, detección, recuento, revisión y clasificación de tejidos y células de interés clínico en función de la morfología, color, intensidad, tamaño, patrón y forma particulares. Los pacientes con tumores que son positivos para el biomarcador PD-L1 pueden ser elegibles para el tratamiento dirigido.
“Mejorar la consistencia y certeza diagnóstica es crucial para proporcionar diagnósticos más rápidos, de mayor calidad y más exactos a los pacientes con cáncer”, dijo Thomas Schinecker, director ejecutivo de Roche Diagnostics. “Nuestro análisis de imagen uPath PD-L1 (SP263) para el cáncer de pulmón de células no pequeñas es el primer algoritmo CE-IVD PD-L1 de próxima generación en el mercado clínico. Es una gran adición a nuestra creciente suite de patología digital para los ensayos VENTANA que ayudan a los médicos a proporcionar las decisiones de tratamiento más exactas para los pacientes con el tipo más común de cáncer de pulmón”.
Enlace relacionado:
Roche entrega la solución de patología digital de extremo a extremo, desde la coloración de tejidos hasta la producción de imágenes digitales de alta calidad que se pueden evaluar de manera confiable utilizando algoritmos automáticos de análisis de imágenes clínicas. El conjunto de algoritmos de análisis de imágenes uPath de Roche para el soporte de decisiones de patología ofrece herramientas de análisis de imágenes listas para usar, que proporcionan análisis rápidos, consistentes y automatizados para que los patólogos puedan evaluar de forma rápida, exacta y confiable la inmunohistoquímica/hibridación in situ y las láminas coloreadas con hematoxilina y eosina. Todos los algoritmos en el paquete para el software uPath proporcionarán análisis de las imágenes en las láminas escaneadas VENTANA DP 200 coloreadas con un análisis de tejido Roche. Juntos, Roche ofrece una nueva base de su solución de patología digital que permitirá el desarrollo de algoritmos de análisis de imágenes basados en inteligencia artificial que pueden proporcionar a los patólogos más herramientas para mejorar la eficiencia y la precisión.
El análisis de imagen uPath PD-L1 (SP263), para el análisis automatizado de láminas completas del algoritmo NSCLC, utiliza inteligencia artificial para proporcionar, con un solo clic, evaluaciones de imágenes de las láminas escaneadas que son objetivas y reproducibles y tienen el potencial de ayudar al diagnóstico y, en última instancia, opciones de tratamiento dirigido para pacientes. Validado en el ensayo VENTANA PD-L1 (SP263), el algoritmo está listo para usar e integrado en el software empresarial Roche uPath, una plataforma digital universal para la gestión de casos, la colaboración y la presentación de informes. El algoritmo ayudará a los patólogos a determinar rápidamente si los tumores son positivos para el biomarcador PD-L1, destacando las células tumorales coloreadas positiva y negativamente con una superposición visual clara para una referencia fácil. Está destinado al uso de diagnóstico in vitro como una ayuda para el patólogo en la visualización, detección, recuento, revisión y clasificación de tejidos y células de interés clínico en función de la morfología, color, intensidad, tamaño, patrón y forma particulares. Los pacientes con tumores que son positivos para el biomarcador PD-L1 pueden ser elegibles para el tratamiento dirigido.
“Mejorar la consistencia y certeza diagnóstica es crucial para proporcionar diagnósticos más rápidos, de mayor calidad y más exactos a los pacientes con cáncer”, dijo Thomas Schinecker, director ejecutivo de Roche Diagnostics. “Nuestro análisis de imagen uPath PD-L1 (SP263) para el cáncer de pulmón de células no pequeñas es el primer algoritmo CE-IVD PD-L1 de próxima generación en el mercado clínico. Es una gran adición a nuestra creciente suite de patología digital para los ensayos VENTANA que ayudan a los médicos a proporcionar las decisiones de tratamiento más exactas para los pacientes con el tipo más común de cáncer de pulmón”.
Enlace relacionado:
Últimas Patología noticias
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más