Se compara la microscopía automatizada para el diagnóstico rutinario de la malaria
Por el equipo editorial de LabMedica en español Actualizado el 17 Oct 2018 |

Imagen: El Autoscope utiliza un software de aprendizaje profundo para cuantificar los parásitos de la malaria en una muestra (Fotografía cortesía de Intellectual Ventures).
El examen microscópico de los frotis de sangre coloreados con Giemsa sigue siendo una forma importante de diagnóstico en el manejo de casos de malaria. Sin embargo, al igual que con otros diagnósticos basados en visualización, la exactitud depende del desempeño del técnico individual, lo que dificulta la estandarización y la confiabilidad.
El reconocimiento automático de imágenes basado en el aprendizaje automático, utilizando redes neuronales convolucionales, ofrece un potencial para superar estos inconvenientes. La aplicación del reconocimiento de imágenes digitales a la microscopía de la malaria, utilizando algoritmos de inteligencia artificial para reemplazar o complementar el factor humano en la interpretación de los frotis de sangre, ha sido intentado, generalmente en frotis delgados.
Un equipo de científicos que colaboran con Intellectual Ventures (Bellevue, WA, EUA) realizó un ensayo observacional transversal en dos instituciones de salud primaria periféricas en Perú. Inscribieron a 700 participantes cuya edad variaba entre 5 y 75 años, y tenían antecedentes de fiebre en los últimos tres días o temperatura elevada al momento del ingreso. Se tomó una muestra de sangre mediante punción digital para hacer frotis de sangre para el diagnóstico de microscopía y se colocaron gotas adicionales de sangre en un papel de filtro para el análisis cuantitativo posterior usando la reacción en cadena de la polimerasa cuantitativa (qPCR). Un prototipo del microscopio digital que emplea un algoritmo basado en el aprendizaje automático, el Autoscope, fue evaluado por su potencial en la microscopía de la malaria.
Los investigadores informaron que en una clínica, la sensibilidad del Autoscope para diagnosticar la malaria fue del 72% y la especificidad fue del 85%. El desempeño de la microscopía fue similar al Autoscope, con una sensibilidad del 68% y una especificidad del 100%. En una clínica, el 85% de las láminas preparadas tenían un mínimo de imágenes de 600 glóbulos blancos (WBC), por lo que cumplían con las condiciones de diseño del Autoscope. En la segunda clínica, la sensibilidad del Autoscope fue del 52% y la especificidad del 70%. El desempeño de la microscopía en esta segunda clínica fue del 42% y la especificidad fue del 97%. Solo el 39% de las láminas de esta clínica cumplieron con los supuestos de diseño de Autoscope respecto a la preparación de las láminas para obtener imágenes de los WBC.
Los autores concluyeron que el desempeño diagnóstico del Autoscope estaba a la par de la microscopía de rutina cuando las láminas tenían un volumen de sangre adecuado para cumplir con los supuestos de diseño, como lo representan los resultados de una clínica. El desempeño diagnóstico del Autoscope fue inferior al de la microscopía de rutina en las láminas de la otra clínica debido a que generó láminas con volúmenes más bajos de sangre. El estudio fue publicado el 25 de septiembre de 2018 en la revista Malaria Journal.
Enlace relacionado:
Intellectual Ventures
El reconocimiento automático de imágenes basado en el aprendizaje automático, utilizando redes neuronales convolucionales, ofrece un potencial para superar estos inconvenientes. La aplicación del reconocimiento de imágenes digitales a la microscopía de la malaria, utilizando algoritmos de inteligencia artificial para reemplazar o complementar el factor humano en la interpretación de los frotis de sangre, ha sido intentado, generalmente en frotis delgados.
Un equipo de científicos que colaboran con Intellectual Ventures (Bellevue, WA, EUA) realizó un ensayo observacional transversal en dos instituciones de salud primaria periféricas en Perú. Inscribieron a 700 participantes cuya edad variaba entre 5 y 75 años, y tenían antecedentes de fiebre en los últimos tres días o temperatura elevada al momento del ingreso. Se tomó una muestra de sangre mediante punción digital para hacer frotis de sangre para el diagnóstico de microscopía y se colocaron gotas adicionales de sangre en un papel de filtro para el análisis cuantitativo posterior usando la reacción en cadena de la polimerasa cuantitativa (qPCR). Un prototipo del microscopio digital que emplea un algoritmo basado en el aprendizaje automático, el Autoscope, fue evaluado por su potencial en la microscopía de la malaria.
Los investigadores informaron que en una clínica, la sensibilidad del Autoscope para diagnosticar la malaria fue del 72% y la especificidad fue del 85%. El desempeño de la microscopía fue similar al Autoscope, con una sensibilidad del 68% y una especificidad del 100%. En una clínica, el 85% de las láminas preparadas tenían un mínimo de imágenes de 600 glóbulos blancos (WBC), por lo que cumplían con las condiciones de diseño del Autoscope. En la segunda clínica, la sensibilidad del Autoscope fue del 52% y la especificidad del 70%. El desempeño de la microscopía en esta segunda clínica fue del 42% y la especificidad fue del 97%. Solo el 39% de las láminas de esta clínica cumplieron con los supuestos de diseño de Autoscope respecto a la preparación de las láminas para obtener imágenes de los WBC.
Los autores concluyeron que el desempeño diagnóstico del Autoscope estaba a la par de la microscopía de rutina cuando las láminas tenían un volumen de sangre adecuado para cumplir con los supuestos de diseño, como lo representan los resultados de una clínica. El desempeño diagnóstico del Autoscope fue inferior al de la microscopía de rutina en las láminas de la otra clínica debido a que generó láminas con volúmenes más bajos de sangre. El estudio fue publicado el 25 de septiembre de 2018 en la revista Malaria Journal.
Enlace relacionado:
Intellectual Ventures
Últimas Microbiología noticias
- Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
- Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
- Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas
- Sistema de identificación y PSA ayuda a diagnosticar enfermedades infecciosas y combatir RAM
- Panel gastrointestinal permite detección rápida de cinco patógenos bacterianos comunes
- Pruebas rápidas PCR en UCI mejoran uso de antibióticos
- Firma genética única predice resistencia a fármacos en bacterias
- Sistema de código de barras rastrea bacterias de neumonía mientras infectan el torrente sanguíneo
- Prueba rápida de diagnóstico de sepsis demuestra mejor atención al paciente y ahorro en aplicaciones hospitalarias
- Sistema de diagnóstico rápido detecta sepsis neonatal en horas
- Nueva prueba diagnostica neumonía bacteriana directamente a partir de sangre completa
- Ensayo de liberación de interferón-γ es eficaz en pacientes con EPOC y tuberculosis pulmonar
- Nuevas pruebas en punto de atención ayudan a reducir uso excesivo de antibióticos
- Prueba de sepsis rápida permite diferenciar infecciones bacterianas, virales y enfermedades no infecciosas
- Prueba CRISPR-TB permite diagnóstico temprano de enfermedad y cribado de la población
- Panel sindrómico ofrece respuestas rápidas para diagnóstico ambulatorio de enfermedades gastrointestinales
Canales
Química Clínica
ver canal
Nuevo método utiliza luz infrarroja pulsada para encontrar huellas del cáncer en plasma sanguíneo
Tradicionalmente, el diagnóstico de cáncer se ha basado en procedimientos invasivos o laboriosos, como las biopsias de tejido. Ahora, una nueva investigación publicada en ACS Central... Más
Nanotubos de carbono ayudan a construir sensores precisos para monitoreo continuo de la salud
Los sensores actuales pueden medir diversos indicadores de salud, como los niveles de glucosa en sangre. Sin embargo, es necesario desarrollar materiales para sensores más precisos y sensibles que... MásDiagnóstico Molecular
ver canal
Análisis de sangre podría identificar a pacientes con riesgo de esclerodermia grave
La esclerosis sistémica, también conocida como esclerodermia, causa el endurecimiento de la piel y el tejido conectivo. En muchos casos, la enfermedad también puede dañar órganos... Más
Prueba de sangre basada en genes predice recurrencia del cáncer de piel avanzado
El melanoma, una forma agresiva de cáncer de piel, se vuelve extremadamente difícil de tratar una vez que se propaga a otras partes del cuerpo. En pacientes con tumores de melanoma metastásicos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásPatología
ver canal
Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
La tecnología de biopsia líquida, que se basa en análisis de sangre para la detección temprana del cáncer y el seguimiento de la carga oncológica en los pacientes,... Más
Algoritmo "detector de metales" consigue tumores vulnerables
Científicos han desarrollado un algoritmo capaz de funcionar como un "detector de metales" para identificar tumores vulnerables, lo que supone un avance significativo en el tratamiento... MásTecnología
ver canal
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... Más
Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
Los virus representan un importante riesgo para la salud mundial, como lo demuestran las recientes pandemias, lo que hace que la detección e identificación tempranas sean esenciales para... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más