Inteligencia artificial ayuda a identificar cáncer de piel precoz
Por el equipo editorial de LabMedica en español Actualizado el 26 Sep 2017 |

Image
Una nueva tecnología utiliza la inteligencia artificial (IA) para ayudar a detectar el cáncer de piel, melanoma, antes que los métodos actuales y para ayudar a reducir el número de biopsias innecesarias. El método basado en la IA emplea software de aprendizaje automático para analizar imágenes de lesiones de la piel y proporcionar a los médicos datos objetivos sobre biomarcadores reveladores para él melanoma.
Alexander Wong, profesor de la Universidad de Waterloo (Waterloo, Canadá), dijo: “Esto podría ser una herramienta muy poderosa para tomar decisiones clínicas en el cáncer de piel”. “Entre más interpretable sea la información, mejores son las decisiones que se pueden tomar”. El profesor Wong desarrolló la tecnología en colaboración con Daniel Cho, un antiguo estudiante de doctorado en Waterloo, con David Clausi, profesor en Waterloo, y con Farzad Khalvati, un profesor adjunto en Waterloo y científico en Sunnybrook.
Actualmente, los dermatólogos dependen, en gran medida, de exámenes visuales subjetivos de las lesiones cutáneas (por ejemplo, lunares) para decidir si a los pacientes les deben practicar biopsias para diagnosticar la enfermedad. El nuevo sistema descifra los niveles de sustancias biomarcadoras en las lesiones, agregando información consistente y cuantitativa a las evaluaciones basadas actualmente sólo en la apariencia visual. En particular, los cambios en la concentración y distribución de la eumelanina (le da color a la piel) y de la hemoglobina son fuertes indicadores de melanoma.
“Puede haber un gran tiempo muerto antes de que los médicos incluso sepan qué le pasa al paciente”, dijo el Prof. Wong, “Nuestro objetivo es acortar ese proceso”. El sistema de IA se encontró usando decenas de miles de imágenes de la piel y sus niveles correspondientes de eumelanina y de hemoglobina. Proporciona a los médicos información objetiva sobre las características de las lesiones para ayudarles a identificar o descartar el melanoma antes de decidir si deben tomar una acción más invasiva. La tecnología podría estar disponible para los médicos a partir de 2018.
La investigación fue presentada recientemente en el 14° Congreso Internacional sobre Análisis y Reconocimiento de Imágenes (ICIAR 2017, 5 al 7 de julio de 2017, Montreal, Canadá).
Alexander Wong, profesor de la Universidad de Waterloo (Waterloo, Canadá), dijo: “Esto podría ser una herramienta muy poderosa para tomar decisiones clínicas en el cáncer de piel”. “Entre más interpretable sea la información, mejores son las decisiones que se pueden tomar”. El profesor Wong desarrolló la tecnología en colaboración con Daniel Cho, un antiguo estudiante de doctorado en Waterloo, con David Clausi, profesor en Waterloo, y con Farzad Khalvati, un profesor adjunto en Waterloo y científico en Sunnybrook.
Actualmente, los dermatólogos dependen, en gran medida, de exámenes visuales subjetivos de las lesiones cutáneas (por ejemplo, lunares) para decidir si a los pacientes les deben practicar biopsias para diagnosticar la enfermedad. El nuevo sistema descifra los niveles de sustancias biomarcadoras en las lesiones, agregando información consistente y cuantitativa a las evaluaciones basadas actualmente sólo en la apariencia visual. En particular, los cambios en la concentración y distribución de la eumelanina (le da color a la piel) y de la hemoglobina son fuertes indicadores de melanoma.
“Puede haber un gran tiempo muerto antes de que los médicos incluso sepan qué le pasa al paciente”, dijo el Prof. Wong, “Nuestro objetivo es acortar ese proceso”. El sistema de IA se encontró usando decenas de miles de imágenes de la piel y sus niveles correspondientes de eumelanina y de hemoglobina. Proporciona a los médicos información objetiva sobre las características de las lesiones para ayudarles a identificar o descartar el melanoma antes de decidir si deben tomar una acción más invasiva. La tecnología podría estar disponible para los médicos a partir de 2018.
La investigación fue presentada recientemente en el 14° Congreso Internacional sobre Análisis y Reconocimiento de Imágenes (ICIAR 2017, 5 al 7 de julio de 2017, Montreal, Canadá).
Últimas Patología noticias
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más