Inteligencia artificial logra desempeño casi humano en análisis de imágenes
Por el equipo editorial de LabMedica en español Actualizado el 11 Jul 2016 |

Imagen: una micrografía que muestra un nódulo linfático invadido por carcinoma de mama ductal, con la extensión del tumor más allá de los ganglios linfáticos. Tinción con H&E. El color púrpura oscuro (centro) son linfocitos (parte de un ganglio linfático normal). Alrededor de los linfocitos extendiéndose a la grasa circundante (parte superior de la imagen) se encuentra el carcinoma ductal de mama (Fotografía cortesía de Michael Bonert/Wikimedia).
Un equipo de investigación ha desarrollado un método de inteligencia artificial (IA) que capacita a los computadores para interpretar las imágenes de patología. En una reciente prueba del método, desarrollado para examinar imágenes de ganglios linfáticos, humanos, complementado con análisis de computador, juntos identificaron el cáncer de mama con 99,5% de exactitud.
El método fue puesto a prueba en una competición de “desafío” que tuvo lugar en el congreso anual 2016 del Simposio Internacional de Imágenes Biomédicas (ISBI; abril de 2016, Praga, República Checa). “La identificación de la presencia o ausencia de cáncer metastásico en los ganglios linfáticos de un paciente es una tarea de rutina y de importancia crítica para los patólogos”, dijo el líder del equipo, Prof. Andrew Beck, MD, PhD, patólogo del Centro Médico Beth Israel Deaconess (BIDMC; Boston, MA , EUA) y de la Facultad de Medicina de Harvard (HMS; Boston, MA, EUA). “Mirar por el microscopio para buscar a través de millones de células normales para identificar solo unas pocas células malignas puede resultar extremadamente laborioso usando métodos convencionales. Nos pareció que era una tarea que el computador podía hacer bastante bien - y esto resultó correcto”.
“Nuestro método de IA se basa en el aprendizaje profundo, un algoritmo de aprendizaje automático utilizado para una variedad de aplicaciones, incluyendo el reconocimiento de voz y el reconocimiento de imágenes”, explicó el profesor Beck. “Este método les enseña a las máquinas a interpretar los patrones complejos y la estructura observados en los datos de la vida real mediante la construcción de múltiples capas de redes neuronales artificiales, en un proceso que se cree que muestra similitudes con el proceso de aprendizaje que se produce en capas de neuronas en la neocorteza del cerebro, la región donde se produce el pensamiento”.
En una evaluación objetiva en que se les dieron a los investigadores láminas de células de nódulos linfáticos y se les pidió que determinaran sí o no, contenían cáncer, el método de diagnóstico automatizado del equipo fue exacto, aproximadamente el 92% del tiempo. “Esto casi coincidía con la tasa de éxito de un patólogo humano, cuyos resultados fueron 96% exactos”, dijo Aditya Khosla, del MIT, quien, con el profesor Beck, recientemente formaron una empresa de nueva creación, PathAI, para seguir desarrollando la tecnología de inteligencia artificial para patología.
“Lo verdaderamente emocionante fue obtenido cuando combinamos el análisis del patólogo con nuestro método de diagnóstico automatizado computacional; el resultado mejoró hasta un 99,5% de exactitud”, dijo el profesor Beck. “La combinación de estos dos métodos produjo una importante reducción de los errores”.
El equipo entrenó al equipo para diferenciar entre las regiones de tumores cancerosos y las regiones normales, con base en una profunda red de convolución de múltiples capas. “En nuestro método, empezamos con cientos de láminas de formación para los que un patólogo ha señalado regiones de cáncer y regiones de células normales”, dijo Dayong Wang, PhD. “Luego extrajimos millones de estos pequeños ejemplos de entrenamiento y utilizamos el aprendizaje profundo para construir un modelo computacional para clasificarlos”. “A continuación, identificamos los ejemplos específicos de entrenamiento para los que el equipo está propenso a cometer errores y re-entrenamos al equipo utilizando un mayor número de los ejemplos de entrenamiento más difíciles. De esta manera, el desempeño del equipo siguió mejorando”.
"Sólo recientemente, la digitalización, almacenamiento, procesamiento y los algoritmos, mejorados, han hecho posible conseguir esta misión con eficacia. Nuestros resultados en la competición ISBI mostraron que lo que el equipo está haciendo es realmente inteligente y que la combinación de interpretaciones humanas e informáticas darán lugar a diagnósticos más precisos y clínicamente más valiosos para guiar las decisiones de tratamiento”, dijo el profesor Beck.
Jeroen van der Laak, PhD, quien lidera un grupo de investigación de patología digital en el Centro Médico de la Universidad Radboud en Holanda y fue uno de los organizadores de la competencia, dijo: “Cuando empezamos este reto, esperábamos algunos resultados interesantes. El hecho de que los computadores tenían un desempeño casi comparable al de los seres humanos es mucho más de lo que habíamos anticipado. Es una clara indicación de que la IA le va a dar forma a la manera en que tratamos con imágenes histopatológicas en los años venideros”.
Enlaces relacionados:
Últimas Patología noticias
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más