LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Inteligencia artificial logra desempeño casi humano en análisis de imágenes

Por el equipo editorial de LabMedica en español
Actualizado el 11 Jul 2016
Print article
Imagen: una micrografía que muestra un nódulo linfático invadido por carcinoma de mama ductal, con la extensión del tumor más allá de los ganglios linfáticos. Tinción con H&E. El color púrpura oscuro (centro) son linfocitos (parte de un ganglio linfático normal). Alrededor de los linfocitos extendiéndose a la grasa circundante (parte superior de la imagen) se encuentra el carcinoma ductal de mama (Fotografía cortesía de Michael Bonert/Wikimedia).
Imagen: una micrografía que muestra un nódulo linfático invadido por carcinoma de mama ductal, con la extensión del tumor más allá de los ganglios linfáticos. Tinción con H&E. El color púrpura oscuro (centro) son linfocitos (parte de un ganglio linfático normal). Alrededor de los linfocitos extendiéndose a la grasa circundante (parte superior de la imagen) se encuentra el carcinoma ductal de mama (Fotografía cortesía de Michael Bonert/Wikimedia).
Un equipo de investigación ha desarrollado un método de inteligencia artificial (IA) que capacita a los computadores para interpretar las imágenes de patología. En una reciente prueba del método, desarrollado para examinar imágenes de ganglios linfáticos, humanos, complementado con análisis de computador, juntos identificaron el cáncer de mama con 99,5% de exactitud.
 
El método fue puesto a prueba en una competición de “desafío” que tuvo lugar en el congreso anual 2016 del Simposio Internacional de Imágenes Biomédicas (ISBI; abril de 2016, Praga, República Checa). “La identificación de la presencia o ausencia de cáncer metastásico en los ganglios linfáticos de un paciente es una tarea de rutina y de importancia crítica para los patólogos”, dijo el líder del equipo, Prof. Andrew Beck, MD, PhD, patólogo del Centro Médico Beth Israel Deaconess (BIDMC; Boston, MA , EUA) y de la Facultad de Medicina de Harvard (HMS; Boston, MA, EUA). “Mirar por el microscopio para buscar a través de millones de células normales para identificar solo unas pocas células malignas puede resultar extremadamente laborioso usando métodos convencionales. Nos pareció que era una tarea que el computador podía hacer bastante bien - y esto resultó correcto”.
 
“Nuestro método de IA se basa en el aprendizaje profundo, un algoritmo de aprendizaje automático utilizado para una variedad de aplicaciones, incluyendo el reconocimiento de voz y el reconocimiento de imágenes”, explicó el profesor Beck. “Este método les enseña a las máquinas a interpretar los patrones complejos y la estructura observados en los datos de la vida real mediante la construcción de múltiples capas de redes neuronales artificiales, en un proceso que se cree que muestra similitudes con el proceso de aprendizaje que se produce en capas de neuronas en la neocorteza del cerebro, la región donde se produce el pensamiento”.
 
En una evaluación objetiva en que se les dieron a los investigadores láminas de células de nódulos linfáticos y se les pidió que determinaran sí o no, contenían cáncer, el método de diagnóstico automatizado del equipo fue exacto, aproximadamente el 92% del tiempo. “Esto casi coincidía con la tasa de éxito de un patólogo humano, cuyos resultados fueron 96% exactos”, dijo Aditya Khosla, del MIT, quien, con el profesor Beck, recientemente formaron una empresa de nueva creación, PathAI, para seguir desarrollando la tecnología de inteligencia artificial para patología.
 
“Lo verdaderamente emocionante fue obtenido cuando combinamos el análisis del patólogo con nuestro método de diagnóstico automatizado computacional; el resultado mejoró hasta un 99,5% de exactitud”, dijo el profesor Beck. “La combinación de estos dos métodos produjo una importante reducción de los errores”.
 
El equipo entrenó al equipo para diferenciar entre las regiones de tumores cancerosos y las regiones normales, con base en una profunda red de convolución de múltiples capas. “En nuestro método, empezamos con cientos de láminas de formación para los que un patólogo ha señalado regiones de cáncer y regiones de células normales”, dijo Dayong Wang, PhD. “Luego extrajimos millones de estos pequeños ejemplos de entrenamiento y utilizamos el aprendizaje profundo para construir un modelo computacional para clasificarlos”. “A continuación, identificamos los ejemplos específicos de entrenamiento para los que el equipo está propenso a cometer errores y re-entrenamos al equipo utilizando un mayor número de los ejemplos de entrenamiento más difíciles. De esta manera, el desempeño del equipo siguió mejorando”.
 
"Sólo recientemente, la digitalización, almacenamiento, procesamiento y los algoritmos, mejorados, han hecho posible conseguir esta misión con eficacia. Nuestros resultados en la competición ISBI mostraron que lo que el equipo está haciendo es realmente inteligente y que la combinación de interpretaciones humanas e informáticas darán lugar a diagnósticos más precisos y clínicamente más valiosos para guiar las decisiones de tratamiento”, dijo el profesor Beck.
 
Jeroen van der Laak, PhD, quien lidera un grupo de investigación de patología digital en el Centro Médico de la Universidad Radboud en Holanda y fue uno de los organizadores de la competencia, dijo: “Cuando empezamos este reto, esperábamos algunos resultados interesantes. El hecho de que los computadores tenían un desempeño casi comparable al de los seres humanos es mucho más de lo que habíamos anticipado. Es una clara indicación de que la IA le va a dar forma a la manera en que tratamos con imágenes histopatológicas en los años venideros”.
 

Enlaces relacionados:
 
Beth Israel Deaconess Medical Center
Harvard Medical School
 

Miembro Oro
ANALIZADOR DE VIABILIDAD/DENSIDAD CELULAR AUTOMATIZADO
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.