LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Cuantificación de subpoblaciones de leucocitos con micromatrices de metilación de ADN

Por el equipo editorial de LabMedica en español
Actualizado el 07 Apr 2014
Print article
Imagen: Una nueva técnica diferencia los tipos celulares en la sangre estudiando los grados de firma de la metilación en el ADN. El amarillo representa no metilación, el azul metilación completa (Fotografía cortesía de la Universidad de Brown).
Imagen: Una nueva técnica diferencia los tipos celulares en la sangre estudiando los grados de firma de la metilación en el ADN. El amarillo representa no metilación, el azul metilación completa (Fotografía cortesía de la Universidad de Brown).
Una novedosa técnica basada en micromatrices usa la metilación del ADN para cuantificar simultáneamente las subpoblaciones de leucocitos, permitiendo la investigación de las modulaciones inmunes, tanto en las muestras de sangre frescas como en las muestras archivadas que previamente no se podían utilizar para este tipo de análisis.

Los patrones de metilación de ADN específicos del linaje celular permiten hacer la diferenciación entre las subpoblaciones normales de leucocitos humanos y se pueden usar para detectar y cuantificar estas subpoblaciones en la sangre periférica. Sin embargo, todos los métodos actuales para el recuento de células inmunes, en una muestra de sangre, requieren células enteras, siendo los métodos “estándar de oro”: los recuentos manuales diferenciales de cinco partes, el hemograma (recuento sanguíneo completo) con un recuento automático diferencial de cinco partes y la clasificación de células activada por fluorescencia (FACS).

Los investigadores de la Universidad de Brown (Providence, Rhode Island, EUA) han desarrollado un método que utiliza la metilación del ADN para cuantificar simultáneamente varias subpoblaciones de leucocitos sin la necesidad de contar células enteras.

Los investigadores utilizaron los análisis mediante micromatriz Illumina (San Diego, CA, EUA) Infinium HumanMethylation y VeraCode GoldenGate de Metilación para identificar firmas de metilación del ADN específicas del linaje celular que diferencian las células T humanas, las células B, las células NK, los monocitos, los eosinófilos, los basófilos y los neutrófilos. A continuación, emplearon un método basado en la bioinformática para cuantificar estos tipos de células en mezclas complejas, incluyendo sangre total, utilizando firmas de metilación del ADN en apenas 20 CpG (citosina y guanina conectados por un enlace fosfodiéster) loci.

Aplicando este método, basado en la metilación del ADN, con el fin de cuantificar los componentes celulares en 80 muestras de sangre entera humana, verificaron la exactitud por comparación directa con métodos de cuantificación inmunes, que son el estándar de oro y que utilizan las características físicas, ópticas, y proteómicas de las células. También demostraron que el método no se vio afectado por el almacenamiento de las muestras de sangre, incluso bajo condiciones que impedían el uso de los métodos estándar de oro.

“Cada tipo de célula tiene su propia firma de metilación”, dijo el autor principal, el Dr. Karl T. Kelsey, profesor de epidemiología en la Universidad de Brown. “Una vez que se comprende la firma única y realmente inmutable que dirige la diferenciación de la célula, entonces usted puede utilizar eso y ya no se vuelve a necesitar la célula”.

El estudio fue publicado en la edición digital del 5 de marzo de 2014, de la revista Genome Biology.

Enlaces relacionados:

Brown University
Illumina


Miembro Oro
CONTROLADOR DE PIPETA SEROLÓGICA
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myeloperoxidase Assay
IDK MPO ELISA
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit

Print article

Canales

Química Clínica

ver canal
Imagen: los pequeños materiales a base de arcilla se pueden personalizar para una variedad de aplicaciones médicas (foto cortesía de Angira Roy y Sam O’Keefe)

Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades

Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más

Inmunología

ver canal
Imagen: la prueba de células madre del cáncer puede elegir con precisión tratamientos más efectivos (fotografía cortesía de la Universidad de Cincinnati)

Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino

El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más

Microbiología

ver canal
Imagen: el ensayo de laboratorio en tubo podría mejorar los diagnósticos de TB en áreas rurales o limitadas por recursos (foto cortesía de la Universidad de Tulane/Kenny Lass)

Dispositivo portátil ofrece resultados de tuberculosis económico y rápido

La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más

Tecnología

ver canal
Imagen: el chip de autoevaluación del VIH-1 será capaz de detectar selectivamente el VIH en muestras de sangre entera (foto cortesía de Shutterstock)

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Sekisui Diagnostics UK Ltd.