LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Toma de muestras de líquido intersticial de la piel usando un parche de microagujas

Por el equipo editorial de LabMedica en español
Actualizado el 08 Dec 2020
Print article
Imagen: Los parches de microagujas que contienen agujas de escala micrométrica se utilizan para crear poros temporales en la piel a través de los cuales se puede extraer el líquido intersticial (Fotografía cortesía de Allison Carter, Georgia Tech).
Imagen: Los parches de microagujas que contienen agujas de escala micrométrica se utilizan para crear poros temporales en la piel a través de los cuales se puede extraer el líquido intersticial (Fotografía cortesía de Allison Carter, Georgia Tech).
La información bioquímica sobre el cuerpo proviene más comúnmente del análisis de sangre, que representa solo el 6% de los fluidos corporales, pero también se puede encontrar información valiosa en otros fluidos corporales que tradicionalmente son difíciles de obtener. Los biofluidos como la saliva, la sangre, la orina, las lágrimas y el líquido intersticial (el líquido que rodea a las células) contienen proteínas que se pueden aislar para controlar la salud.

El líquido intersticial tisular (LIS) rodea las células y es una fuente infrautilizada de biomarcadores que complementa las fuentes convencionales como la sangre y la orina. Sin embargo, el LIS ha recibido una atención limitada debido en gran parte a la falta de métodos de recolección simples. Utilizando una serie de agujas diminutas que son casi demasiado pequeñas para verlas, los científicos desarrollaron una técnica mínimamente invasiva para tomar muestras de LIS que podrían proporcionar una nueva fuente de información para la monitorización clínica de rutina y las pruebas de diagnóstico.

Los ingenieros biomédicos y sus colegas asociados con el Instituto de Tecnología de Georgia (Atlanta, GA, EUA), utilizaron un parche que contenía cinco microagujas sólidas de acero inoxidable de 254 µm de longitud. Al presionar el parche en un ángulo sobre la piel de 50 pacientes humanos, crearon microporos poco profundos que llegaban solo a la capa exterior de piel que contiene LIS. Luego, los científicos aplicaron una succión al área de la piel que contiene los poros y obtuvieron suficiente LIS para hacer tres tipos de análisis. A modo de comparación, también tomaron muestras de sangre y obtuvieron LIS mediante la técnica de ampollas más antigua.

Muchos biomarcadores utilizados en la práctica clínica actual eran comunes al LIS y al plasma. Debido a que el LIS no se coagula, estos biomarcadores se podrían monitorear continuamente en el LIS de manera similar a los monitores continuos de glucosa actuales, pero sin requerir un sensor subcutáneo permanente. Los biomarcadores diferentes de LIS incluyeron moléculas asociadas con fisiología sistémica y dermatológica, así como compuestos exógenos de exposiciones ambientales. El procedimiento de extracción general tomó un total de aproximadamente 20 minutos para cada individuo de prueba. El procedimiento fue bien tolerado por los voluntarios y los poros microscópicos cicatrizaron rápidamente en un día con mínima irritación.

El fluido extraído se analizó en la Universidad de Emory (Atlanta, GA, EUA), utilizando técnicas de cromatografía líquida y espectrometría de masas para identificar las especies químicas que contenía. En general, hubo alrededor de 10.000 compuestos únicos, la mayoría de los cuales también se encontraron en las muestras de sangre. Sin embargo, alrededor del 12% de las especies químicas no se encontraron en la sangre, y otras se encontraron en el LIS en niveles más altos que en la sangre.

El equipo también determinó la farmacocinética de la cafeína y la farmacodinámica de la glucosa, ambas moléculas pequeñas, a partir del LIS, lo que indica que es factible obtener esa información de biomarcadores dinámicos de la técnica. Esas mediciones sugirieron que el LIS podría proporcionar un medio para monitorear continuamente dichos compuestos, aprovechando el hecho de que el líquido no se coagula.

Mark R. Prausnitz, PhD, profesor de Ingeniería Química y Biomolecular y autor principal del estudio, dijo: “El líquido intersticial se origina en la sangre y luego se escapa de los capilares para llevar nutrientes a las células de los tejidos del cuerpo. Debido a que el líquido intersticial está en comunicación directa con las células, debe tener información sobre los tejidos en sí, más allá de lo que se puede medir al analizar la sangre. Esta técnica basada en microagujas podría proporcionar una forma mínimamente invasiva y sencilla de acceder a este líquido intersticial para que esté disponible para aplicaciones de diagnóstico médico”. El estudio fue publicado el 25 de noviembre de 2020 en la revista Science Translational Medicine.

Enlace relacionado:
Instituto de Tecnología de Georgia
Universidad de Emory

Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
PRUEBA DE ANTIPÉPTIDO CÍCLICO CITRULINADO
GPP-100 Anti-CCP Kit
New
Miembro Oro
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Canales

Diagnóstico Molecular

ver canal
Imagen: un análisis de sangre podría predecir el riesgo de cáncer de pulmón con mayor precisión y reducir el número de escaneos requeridos (foto cortesía de 123RF)

Prueba de sangre predice con precisión el riesgo de cáncer de pulmón y reduce la necesidad de escaneos de TC

El cáncer de pulmón es extremadamente difícil de detectar tempranamente debido a las limitaciones de las tecnologías de detección actuales, que son costosas, a veces... Más

Hematología

ver canal
Imagen: El ensayo de Procleix Arboplex ha recibido la marca CE (foto cortesía de Grifols)

Primera prueba NAT 4 en 1 para el cribado de arbovirus podría reducir el riesgo de infecciones transmitidas por transfusiones

Los arbovirus representan una amenaza emergente para la salud mundial, exacerbada por el cambio climático y el aumento de la conectividad mundial que está facilitando su propagación a nuevas regiones.... Más

Inmunología

ver canal
Imagen: los exosomas pueden ser un biomarcador prometedor para el rechazo celular después del trasplante de órganos (foto cortesía de Nicolas Primola/Shutterstock)

Análisis de sangre para diagnóstico de rechazo celular después de trasplante de órganos podría reemplazar las biopsias quirúrgicas

Los órganos trasplantados enfrentan constantemente el riesgo de ser rechazados por el sistema inmunológico del receptor, que los diferencia de los órganos no propios mediante... Más

Microbiología

ver canal
Imagen: Las innovaciones del analizador DXI 9000 abordan las necesidades de velocidad, confiabilidad, reproducibilidad, calidad y expansión del menú (foto cortesía de Beckman Coulter)

Nuevos ensayos de hepatitis con marcado CE permite la detección temprana de infecciones

Según la Organización Mundial de la Salud (OMS), se estima que 354 millones de personas en todo el mundo padecen hepatitis B o C crónica. Estos virus son las principales causas de... Más

Patología

ver canal
Imagen: Comparación de imágenes de histopatología tradicionales versus los datos en bruto de PARS (foto cortesía de la Universidad de Waterloo)

Sistema de imágenes digitales impulsado por IA podría revolucionar el diagnóstico del cáncer

El proceso de biopsia es importante para confirmar la presencia de cáncer. En la técnica de histopatología convencional, el tejido se extirpa, se corta, se tiñe, se monta en... Más

Tecnología

ver canal
Imagen: el chip optofluídico de nanoporo utilizado en el nuevo sistema de diagnóstico (foto cortesía de UC Santa Cruz)

Nuevo sistema de diagnóstico de laboratorio en un chip iguala la precisión de las pruebas de PCR

Si bien las pruebas de PCR son el estándar de oro en cuanto a precisión para las pruebas de virología, tienen limitaciones como la complejidad, la necesidad de operadores de laboratorio capacitados y tiempos... Más