Método de IA mide gravedad del cáncer mediante informes patológicos
Por el equipo editorial de LabMedica en español Actualizado el 28 Nov 2024 |

Los investigadores suelen recurrir a los registros de tumores, que son bases de datos gestionadas por hospitales y organismos gubernamentales, para seleccionar a los pacientes de cáncer para los ensayos clínicos. Estos registros requieren personal especializado para evaluar manualmente el estadio del cáncer de un paciente mediante la revisión de diversos documentos, incluidos los informes de laboratorio y las notas de los médicos. Este proceso puede llevar mucho tiempo y, para cuando se añade la información del paciente al registro, pueden haber pasado meses, lo que podría hacer que el paciente perdiera la oportunidad de participar en ensayos clínicos o recibir otros tratamientos. Ahora, los investigadores han desarrollado y probado con éxito un método de inteligencia artificial (IA) que puede reducir significativamente esta demora, mejorando el ritmo de la investigación y ampliando el acceso de los pacientes a los ensayos clínicos.
El método de IA, desarrollado por un grupo de investigadores dirigido por Cedars-Sinai (Los Ángeles, CA, EUA), utiliza informes de patología para clasificar automáticamente a los pacientes según la gravedad de sus cánceres, lo que potencialmente acelera el proceso de selección de ensayos clínicos. Este avance, descrito en la revista revisada por pares Nature Communications, no solo tiene el potencial de agilizar el lanzamiento de ensayos clínicos sobre el cáncer, sino que también representa una expansión significativa del papel de la IA en la atención médica. El desarrollo de este modelo de IA fue posible gracias a una investigación previa que superó los desafíos técnicos en la extracción y el análisis de las notas de los patólogos de los registros médicos electrónicos. El modelo de IA puede determinar rápidamente el estadio del cáncer interpretando un componente específico del registro médico electrónico del paciente: el informe de patología, que detalla los hallazgos del examen de las muestras de tejido por parte de los patólogos. En pruebas con miles de registros de pacientes, los investigadores confirmaron que su modelo de IA estadificó eficazmente los cánceres de los pacientes.
El método se basa en un modelo de IA transformador, que imita las complejas capacidades de toma de decisiones del cerebro humano. Para desarrollar el modelo, los investigadores primero lo entrenaron utilizando informes de patología disponibles públicamente de The Cancer Genome Atlas, una base de datos del gobierno que contiene datos de casi 7.000 pacientes de 23 tipos de cáncer. Para probar su versatilidad, el modelo se aplicó a casi 8.000 informes de patología de un solo centro médico. Los resultados, medidos utilizando una estadística de evaluación de IA estándar, mostraron que el modelo funcionó con alta precisión. Además de evaluar a los pacientes para ensayos clínicos en función de sus estadios de cáncer, el modelo de IA también puede automatizar la clasificación de pacientes para estudios de observación, análisis de datos retrospectivos y planificación del tratamiento. Los investigadores han puesto su modelo de IA, llamado BB-TEN (Big Bird – TNM staging Extracted from Notes), a disposición de otras instituciones para usos académicos y otros usos.
“Al acelerar la selección de candidatos para ensayos clínicos sobre el cáncer, este innovador modelo de IA promete acelerar el desarrollo de tratamientos relevantes y ponerlos a disposición de más pacientes”, afirmó el Dr. Jason Moore, presidente del Departamento de Biomedicina Computacional de Cedars-Sinai.
Últimas Patología noticias
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
- Herramienta de IA pionera visualiza la "red social" de las células para tratar el cáncer
- Prueba diagnostica tumores cerebrales infantiles de alto riesgo
- Dispositivo microfluídico evalúa adherencia de células tumorales para predecir propagación del cáncer
- Nueva herramienta de IA mejora métodos anteriores para identificar cáncer colorrectal en muestras de tejido
- Técnica predice tumores agresivos antes de que hagan metástasis
Canales
Química Clínica
ver canal
Nanotubos de carbono ayudan a construir sensores precisos para monitoreo continuo de la salud
Los sensores actuales pueden medir diversos indicadores de salud, como los niveles de glucosa en sangre. Sin embargo, es necesario desarrollar materiales para sensores más precisos y sensibles que... Más
Dispositivo basado en papel mejora la precisión de prueba del VIH
En las regiones donde el acceso a las clínicas para realizar análisis de sangre rutinarios presenta obstáculos financieros y logísticos, los pacientes con VIH pueden recolectar... MásDiagnóstico Molecular
ver canal
Primera prueba que utiliza microARN para predecir toxicidad de terapia contra el cáncer
Muchos hombres con cáncer de próstata en etapa temprana reciben radioterapia corporal estereotáctica (RTCE), un tratamiento de radiación de alta precisión que se completa... Más
Ensayo basado en células proporciona detección sensible y específica de autoanticuerpos en desmielinización
Los anticuerpos anti-glicoproteína asociada a la mielina (MAG) sirven como marcadores de un trastorno desmielinizante autoinmune que afecta al sistema nervioso periférico y provoca deterioro sensorial.... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... Más
Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas
La identificación rápida y precisa de microbios patógenos en muestras de pacientes es esencial para el tratamiento eficaz de enfermedades infecciosas agudas, como la sepsis.... MásTecnología
ver canal
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... Más
Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
Los virus representan un importante riesgo para la salud mundial, como lo demuestran las recientes pandemias, lo que hace que la detección e identificación tempranas sean esenciales para... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más