Análisis celular asistido por computadora permite diagnóstico más rápido de enfermedades de la sangre
Por el equipo editorial de LabMedica en español Actualizado el 20 Aug 2023 |

Los trastornos de la sangre se caracterizan frecuentemente por alteraciones en las cantidades y formas de los glóbulos rojos y blancos. Los métodos tradicionales para diagnosticar la enfermedad implican examinar frotis de sangre en un portaobjetos bajo un microscopio, aunque evaluar estos cambios puede ser desafiante incluso para profesionales con experiencia, ya que las sutiles alteraciones pueden afectar solo una pequeña fracción de las decenas de miles de células visibles. En consecuencia, distinguir entre enfermedades no siempre es sencillo. Por ejemplo, los cambios visibles en la sangre de las personas con síndrome mielodisplásico (SMD), una forma temprana de leucemia, a menudo se asemejan a los que se observan en tipos de anemia menos dañinos. El diagnóstico definitivo de SMD requiere procedimientos más invasivos, como biopsias de médula ósea y pruebas genéticas moleculares.
Científicos del Centro Alemán de Investigación del Cáncer (DKFZ, Heidelberg, Alemania) y el Instituto de Células Madre de Cambridge (Cambridge, Reino Unido) ahora han desarrollado un sistema de inteligencia artificial (IA) capaz de identificar y caracterizar glóbulos blancos y rojos en imágenes microscópicas de muestras de sangre. Este algoritmo, llamado Haemorasis, ayuda a los médicos a diagnosticar trastornos de la sangre y es de acceso público como una herramienta de código abierto con fines de investigación. Inicialmente, los científicos entrenaron a Haemorasis para reconocer la morfología celular utilizando más de medio millón de glóbulos blancos y millones de glóbulos rojos de más de 300 personas con diversos trastornos sanguíneos (incluidas diferentes formas de anemia y SMD).
Aprovechando este conocimiento adquirido, Haemorasis ahora puede proponer diagnósticos para trastornos sanguíneos e incluso diferenciar subtipos genéticos de estas afecciones. Además, el algoritmo descubre asociaciones significativas entre enfermedades y formas de células específicas, una tarea complicada por el gran volumen de células involucradas. Haemorasis se sometió a pruebas en tres grupos de pacientes distintos para confirmar su eficacia en diversos centros de pruebas y sistemas de escaneo de hemogramas. Diseñado para el diagnóstico de hematología, Haemorasis ayuda a proporcionar un diagnóstico inicial más preciso de los trastornos sanguíneos, que es un paso esencial para identificar a los pacientes que pueden requerir procedimientos más invasivos, como pruebas de médula ósea o análisis genético. Los estudios en curso explorarán las posibles limitaciones del método.
"El análisis celular automatizado con Haemorasis podría complementar el diagnóstico de rutina de los trastornos sanguíneos en el futuro. Hasta ahora, el algoritmo solo se ha entrenado en enfermedades específicas, pero aún vemos un gran potencial en este método", dijo Moritz Gerstung de DKFZ.
Enlaces relacionados:
Centro Alemán de Investigación del Cáncer
Instituto de Células Madre de Cambridge
Últimas Patología noticias
- Nuevo método basado en UV y aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
Canales
Química Clínica
ver canal
Nuevo método utiliza luz infrarroja pulsada para encontrar huellas del cáncer en plasma sanguíneo
Tradicionalmente, el diagnóstico de cáncer se ha basado en procedimientos invasivos o laboriosos, como las biopsias de tejido. Ahora, una nueva investigación publicada en ACS Central... Más
Nanotubos de carbono ayudan a construir sensores precisos para monitoreo continuo de la salud
Los sensores actuales pueden medir diversos indicadores de salud, como los niveles de glucosa en sangre. Sin embargo, es necesario desarrollar materiales para sensores más precisos y sensibles que... MásDiagnóstico Molecular
ver canal
Análisis de sangre podría identificar a pacientes con riesgo de esclerodermia grave
La esclerosis sistémica, también conocida como esclerodermia, causa el endurecimiento de la piel y el tejido conectivo. En muchos casos, la enfermedad también puede dañar órganos... Más
Prueba de sangre basada en genes predice recurrencia del cáncer de piel avanzado
El melanoma, una forma agresiva de cáncer de piel, se vuelve extremadamente difícil de tratar una vez que se propaga a otras partes del cuerpo. En pacientes con tumores de melanoma metastásicos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... Más
Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
Los virus representan un importante riesgo para la salud mundial, como lo demuestran las recientes pandemias, lo que hace que la detección e identificación tempranas sean esenciales para... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más