Competencia de la AACC demuestra cómo los laboratorios pueden usar el análisis de datos para resolver problemas reales
Por el equipo editorial de LabMedica en español Actualizado el 20 Oct 2022 |

Los médicos confían en la medición del péptido relacionado con la hormona paratiroidea (PTHrP) para ayudar a establecer un diagnóstico de hipercalcemia humoral maligna, una forma rara de cáncer que causa, entre otras cosas, altos niveles de calcio en la sangre. El problema: los médicos a menudo lo solicitan para pacientes con baja probabilidad previa a la prueba. Las pruebas excesivas de PTHrP pueden conducir a procedimientos costosos, innecesarios y potencialmente dañinos, incluidas pruebas de laboratorio invasivas para localizar un tumor canceroso posiblemente inexistente. Un algoritmo predictivo exitoso ayudaría a los laboratoristas a identificar de manera rápida y precisa las órdenes de pruebas de PTHrP potencialmente inapropiadas al predecir si los datos de laboratorio disponibles en el momento de la orden ya sugieren un resultado anormal de PTHrP. Un desafío de aprendizaje automático presentado por primera vez por la Asociación Americana de Química Clínica (Washington, DC, EUA; www.aacc.org ) en la Reunión Científica Anual y Exposición de Laboratorio Clínico de la AACC de 2022 demostró cómo los laboratorios pueden usar el análisis de datos para resolver estos problemas reales que enfrentan los pacientes y los médicos.
El Concurso de Predicción de Resultados de PTHrP presentado por la AACC en el evento en asociación con la sección de informática del departamento de patología e inmunología de la Facultad de Medicina de la Universidad de Washington, St. Louis (WUSM, St. Louis, MI, EUA) tuvo como objetivo involucrar a la comunidad de profesionales de la medicina de laboratorio en un entorno en línea divertido y amigable donde podrían practicar sus habilidades de análisis de datos, aprender unos de otros y ver cómo otros abordan los problemas en el lado de la medicina de laboratorio basada en datos. Los participantes de la competencia formaron equipos y utilizaron datos clínicos anonimizados reales compartidos de forma segura de las órdenes de PTHrP en WUSM para construir sus algoritmos predictivos. Esto se denomina "conjunto de datos de práctica". El uso de datos clínicos reales fue un gran problema porque la mayoría de las competencias de aprendizaje automático utilizan conjuntos de datos sintetizados. Los organizadores configuraron la competencia utilizando Kaggle, una popular plataforma en línea para concursos y modelos de aprendizaje automático, y seleccionaron la puntuación F1 (la media armónica de sensibilidad y especificidad) como la métrica de rendimiento.
Un desafío importante para los equipos fue desarrollar un modelo predictivo que lograra una alta precisión sin sobreajustarlo al conjunto de datos públicos (el conjunto de datos de práctica). El sobreajuste significaría que el algoritmo funcionó bien con los datos iniciales pero falló si se aplicaba a nuevos datos y no era generalizable. Los organizadores utilizaron un segundo conjunto de datos privado para juzgar la eficacia del algoritmo. De mayo a junio de 2022, 24 equipos ejecutaron un total de 395 iteraciones de sus modelos predictivos a través del conjunto de datos público. Cada vez que un equipo enviaba un modelo predictivo para un intento, usaban la puntuación F1 resultante para mejorar, o "entrenar", el modelo. Para el intento final, cada equipo ejecutó su modelo predictivo a través del conjunto de datos privado. El equipo ganador, Equipo Kagglist, logró una puntuación de F1 de 0,9 con su modelo predictivo. Como referencia, el enfoque manual de WUSM para identificar pacientes en riesgo de PTHrP tuvo una puntuación F1 de 0,6, lo que hace que el algoritmo sea una mejora significativa con respecto a la práctica estándar.
“No deberíamos esperar que un modelo predictivo entrenado en datos de un hospital funcione automáticamente en otros hospitales”, dijo Yingheng Wang del Equipo Kaggle. “En última instancia, debemos apuntar a crear modelos adaptativos que otras instituciones puedan ajustar para sus poblaciones específicas”.
“La calidad de los 24 modelos fue excelente y mostró un alto grado de precisión para la tarea muy difícil con la que desafiamos a los participantes”, dijo el organizador de la competencia Mark Zaydman, MD, PhD, profesor asistente de patología e inmunología en WUSM. “Esta competencia realmente demostró que nuestra comunidad está lista para involucrarse con herramientas sofisticadas de aprendizaje automático y análisis de datos”.
Enlaces relacionados:
AACC
Últimas Industria noticias
- Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
- Grifols e IBL de Tecan colaboran en paneles de biomarcadores avanzados
- Nueva colaboración avanza en identificación microbiana para diagnóstico de enfermedades infecciosas
- Tecan adquiere activos de inmunoensayo ELISA de Cisbio Bioassays de Revvity
- Leica Biosystems y Bio-Techne amplían su colaboración multiómica espacial
- Philips e Ibex amplían colaboración para mejorar flujos de trabajo de patología basados en IA
- Grifols e Inpeco se asocian para crear el "laboratorio del futuro" de medicina transfusional
- Investigación impulsa imágenes ópticas en tiempo real mejoradas con IA en biopsias de cáncer de pulmón
- CACLP 2025 reúne innovadores globales de industria del IVD
- Bio-Rad adquirirá Stilla Technologies, desarrollador de PCR digital
- ABL firma acuerdo de licencia y transferencia de know-how para cartera de Fast Track Diagnostics de Siemens
- Becton Dickinson escindirá su negocio de biociencias y soluciones de diagnóstico
- Nueva colaboración revoluciona los análisis de muestras biológicas
- Medlab Middle East mira hacia el futuro de los laboratorios
- Medix Biochemica adquiere Candor Bioscience, desarrollador de soluciones de inmunoensayo
- bioMérieux adquiere SpinChip Diagnostics empresa noruega especializada en inmunoensayos
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásPatología
ver canal
Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
La terapia celular tiene un gran potencial en el tratamiento de enfermedades como el cáncer, las enfermedades inflamatorias y los trastornos degenerativos crónicos mediante la manipulación o el reemplazo... Más
Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
La tecnología de biopsia líquida, que se basa en análisis de sangre para la detección temprana del cáncer y el seguimiento de la carga oncológica en los pacientes,... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más