Citómetro automático cuenta células tumorales en sangre
Por el equipo editorial de LabMedica en español Actualizado el 08 Jun 2015 |

Imagen: El canal de medición que forma el componente clave del citómetro PoCyton es visible en la parte derecha de la imagen (Fotografía cortesía de Fraunhofer ICT-IMM).
La citometría de flujo ha sido utilizada para contar las células cancerosas durante muchos años, pero los grandes instrumentos son caros y sólo pueden ser operados por personal capacitado.
Los citómetros de flujo existentes son capaces de medir la cantidad de células tumorales circulantes en el torrente sanguíneo pero, a menudo, cuestan hasta 300.000 euros y pueden ocupar una enorme cantidad de espacio, equivalente a dos lavadoras.
Los científicos del Instituto Fraunhofer de Tecnología Química (Múnich, Alemania) desarrollaron el citómetro PoCyton, que es barato de producir, no más grande que una caja de zapatos y automatizado. Lo único que el citómetro de flujo PoCyton necesita es una muestra de la sangre del paciente, y en poco tiempo el médico tratante sabrá cuántas células tumorales están circulando en la sangre. Los crecimientos cancerosos liberan células al torrente sanguíneo, y su número proporciona una indicación de la eficacia de la terapia. Si el número de células cancerosas disminuye en el curso del tratamiento, muestra que ha sido eficaz.
La citometría de flujo funciona con el siguiente principio: un colorante fluorescente se inyecta en la sangre, y las moléculas de colorante se une a las células tumorales, dejando todas las demás células sin marcar. Mientras que hasta ahora el médico ha tenido que añadir el colorante a la muestra de sangre de forma manual, esto ahora se lleva a cabo de forma automática en el proceso PoCyton. La sangre se canaliza a través de un área focal estrecha, haciendo que todas las células en suspensión pasen una por una en frente de un detector láser de punto de. La luz hace que las células a las que el colorante se ha adherido, las células tumorales, emitan fluorescencia, permitiendo que el dispositivo las pueda detectar y contar. Este paso estrecho es la clave para el proceso PoCyton.
Michael Bassler, PhD, científico que ayudó a desarrollar el citómetro, dijo: “Lo hemos diseñado de tal manera que el desempeño es 20 veces mayor que en la citometría convencional. Al mismo tiempo, su geometría se eligió para asegurar que no haya células que pasen en frente de otra. De esta manera, los científicos pueden estar seguros de que el sistema registra cada objeto que fluye por el detector, y que ninguna célula se oculta detrás de otra. Tales errores pueden tener consecuencias dramáticas, porque una mera muestra de 10 mL de sangre contiene alrededor de mil millones de objetos suspendidos. De éstos, sólo cinco son células tumorales circulantes, incluso en un paciente gravemente enfermo”.
Enlace relacionado:
Fraunhofer Institute for Chemical Technology
Los citómetros de flujo existentes son capaces de medir la cantidad de células tumorales circulantes en el torrente sanguíneo pero, a menudo, cuestan hasta 300.000 euros y pueden ocupar una enorme cantidad de espacio, equivalente a dos lavadoras.
Los científicos del Instituto Fraunhofer de Tecnología Química (Múnich, Alemania) desarrollaron el citómetro PoCyton, que es barato de producir, no más grande que una caja de zapatos y automatizado. Lo único que el citómetro de flujo PoCyton necesita es una muestra de la sangre del paciente, y en poco tiempo el médico tratante sabrá cuántas células tumorales están circulando en la sangre. Los crecimientos cancerosos liberan células al torrente sanguíneo, y su número proporciona una indicación de la eficacia de la terapia. Si el número de células cancerosas disminuye en el curso del tratamiento, muestra que ha sido eficaz.
La citometría de flujo funciona con el siguiente principio: un colorante fluorescente se inyecta en la sangre, y las moléculas de colorante se une a las células tumorales, dejando todas las demás células sin marcar. Mientras que hasta ahora el médico ha tenido que añadir el colorante a la muestra de sangre de forma manual, esto ahora se lleva a cabo de forma automática en el proceso PoCyton. La sangre se canaliza a través de un área focal estrecha, haciendo que todas las células en suspensión pasen una por una en frente de un detector láser de punto de. La luz hace que las células a las que el colorante se ha adherido, las células tumorales, emitan fluorescencia, permitiendo que el dispositivo las pueda detectar y contar. Este paso estrecho es la clave para el proceso PoCyton.
Michael Bassler, PhD, científico que ayudó a desarrollar el citómetro, dijo: “Lo hemos diseñado de tal manera que el desempeño es 20 veces mayor que en la citometría convencional. Al mismo tiempo, su geometría se eligió para asegurar que no haya células que pasen en frente de otra. De esta manera, los científicos pueden estar seguros de que el sistema registra cada objeto que fluye por el detector, y que ninguna célula se oculta detrás de otra. Tales errores pueden tener consecuencias dramáticas, porque una mera muestra de 10 mL de sangre contiene alrededor de mil millones de objetos suspendidos. De éstos, sólo cinco son células tumorales circulantes, incluso en un paciente gravemente enfermo”.
Enlace relacionado:
Fraunhofer Institute for Chemical Technology
Últimas Tecnología noticias
- Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
- Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
- Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
- Teléfonos inteligentes podrían diagnosticar enfermedades mediante escáneres infrarrojos
- Nueva tecnología de sensores permite diagnóstico temprano de trastornos metabólicos y cardiovasculares
- Avance en impresión 3D permite desarrollo a gran escala de diminutos dispositivos microfluídicos
- Plataforma de sensores en papel transforma diagnóstico cardíaco
- Estudio explora impacto de pruebas POC en el futuro de los diagnósticos
- Sensor económico de respuesta rápida permite detección temprana y precisa del cáncer de pulmón
- Nanotecnología para diagnósticar cáncer de cuello uterino podría sustituir pruebas de Papanicolaou
- Plataforma de laboratorio en chip agilizar diagnóstico del cáncer
- Plataforma de biosensores detecta simultáneamente vitamina C y SARS-CoV-2
- Nuevo método analiza lágrimas para detectar enfermedades de forma temprana
- Sensores basados en FET abren camino a dispositivos de diagnóstico portátiles para detectar múltiples enfermedades
- Biosensor basado en papel para detectar glucosa mediante sudor revoluciona tratamiento de diabetes
- Análisis de sangre con IA identifica pacientes en etapa más temprana del cáncer de mama
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásPatología
ver canal
Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
La terapia celular tiene un gran potencial en el tratamiento de enfermedades como el cáncer, las enfermedades inflamatorias y los trastornos degenerativos crónicos mediante la manipulación o el reemplazo... Más
Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
La tecnología de biopsia líquida, que se basa en análisis de sangre para la detección temprana del cáncer y el seguimiento de la carga oncológica en los pacientes,... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más