LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Inteligencia artificial ayuda a diagnosticar la leucemia

Por el equipo editorial de LabMedica en español
Actualizado el 05 Oct 2021
Print article
Imagen: El citómetro de flujo Navios EX ofrece una solución para aplicaciones de citometría avanzadas con flujos de trabajo para laboratorios de alto rendimiento (Fotografía cortesía de Beckman Coulter)
Imagen: El citómetro de flujo Navios EX ofrece una solución para aplicaciones de citometría avanzadas con flujos de trabajo para laboratorios de alto rendimiento (Fotografía cortesía de Beckman Coulter)
La citometría de flujo multiparamétrica (CFM) es una piedra angular en la toma de decisiones clínicas para las leucemias y los linfomas. El análisis de datos de la CFM requiere la activación manual de poblaciones de células, lo que necesita mucho tiempo, es subjetivo y, a menudo, se limita a un espacio bidimensional.

Los síntomas típicos de los linfomas malignos de células B y las leucemias relacionadas son que los ganglios linfáticos se inflaman, hay pérdida de peso y fatiga, así como fiebre e infecciones. Si se sospecha un cáncer del sistema linfático de este tipo, el médico toma una muestra de sangre o médula ósea y la envía a laboratorios especializados para el análisis de citometría de flujo.

Científicos clínicos y bioinformáticos asociados con la Universidad de Bonn (Bonn, Alemania) y colegas de otras instituciones, presentan un flujo de trabajo que permite que la inteligencia artificial (IA) existente se adapte a múltiples protocolos de CFM. Combinaron el aprendizaje por transferencia (AT) con la fusión de datos de la CFM para aumentar la robustez de la IA. El conjunto de datos base consta de alrededor de 18.000 muestras de entrenamiento adquiridas utilizando un panel de CFM de 9 colores en el Laboratorio de Leucemia de Múnich (MLL, Múnich, Alemania) entre 2017 y 2018. Se obtuvieron cuatro conjuntos de datos de objetivos de CFM adicionales con diferentes composiciones de paneles de CFM. Todas las muestras se analizaron en citómetros de flujo Navios (Beckman Coulter, Miami, FL, EUA).

La citometría de flujo es un método en el que las células sanguíneas pasan por sensores de medición a alta velocidad. Las propiedades de las células se pueden detectar en función de su forma, estructura o coloración. La detección y caracterización exacta de las células patológicas es importante al realizar un diagnóstico. Los laboratorios utilizan “anticuerpos” que se adhieren a la superficie de las células y que están acoplados a colorantes fluorescentes. Estos marcadores también se pueden usar para detectar pequeñas diferencias entre las células cancerosas y las células sanguíneas sanas. La citometría de flujo genera grandes cantidades de datos. En promedio, se miden más de 50.000 células por muestra. Luego, estos datos se analizan típicamente en la pantalla trazando la expresión de los marcadores utilizados entre sí.

La gran novedad de la IA presentada en el estudio radica en la posibilidad de transferencia de conocimiento. Los laboratorios particularmente más pequeños que no pueden permitirse su propia experiencia en bioinformática y que también pueden tener muy pocas muestras para desarrollar su propia IA desde cero pueden beneficiarse de este estudio. Después de una breve fase de entrenamiento, durante la cual la IA aprende los detalles del nuevo laboratorio, puede aprovechar el conocimiento derivado de muchos miles de conjuntos de datos.

Peter M. Krawitz, MD, PhD, profesor del Instituto de Estadística Genómica y Bioinformática y autor principal del estudio, dijo: “El estándar de oro es el diagnóstico por parte de hematólogos, que también puede tener en cuenta los resultados de pruebas adicionales. El objetivo de usar IA no es reemplazar a los médicos, sino hacer el mejor uso de la información contenida en los datos”.

Los autores concluyeron que su flujo de trabajo extendió los modelos de aprendizaje profundo a múltiples paneles de CFM y lograron una alta exactitud para la clasificación de múltiples etiquetas en todos los conjuntos de datos. Abordaron algunos de los desafíos anteriores para la clasificación con la citometría de flujo automatizada al permitir que los modelos se entrenaran con tamaños de entrenamiento más pequeños y generalizaron modelos para trabajar con múltiples paneles de CFM. El flujo de trabajo es un paso hacia la robustez de los modelos de aprendizaje profundo para que la IA, para el diagnóstico CFM, pueda pasar de la etapa de “prueba de concepto” a los diagnósticos de rutina. El estudio fue publicado el 17 de septiembre de 2021 en la revista Patterns.

Enlace relacionado:
Universidad de Bonn
Laboratorio de Leucemia de Múnich

Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Miembro Oro
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Canales

Química Clínica

ver canal
Imagen: El ionizador miniatura impreso en 3D es un componente clave de un espectrómetro de masas (foto cortesía del MIT)

Espectrómetro de masas impreso en 3D para el punto de atención supera a los modelos de última generación

La espectrometría de masas es una técnica precisa para identificar los componentes químicos de una muestra y tiene un potencial significativo para monitorear estados de salud de enfermedades... Más

Diagnóstico Molecular

ver canal
Imagen: un análisis de sangre podría predecir el riesgo de cáncer de pulmón con mayor precisión y reducir el número de escaneos requeridos (foto cortesía de 123RF)

Prueba de sangre predice con precisión el riesgo de cáncer de pulmón y reduce la necesidad de escaneos de TC

El cáncer de pulmón es extremadamente difícil de detectar tempranamente debido a las limitaciones de las tecnologías de detección actuales, que son costosas, a veces... Más

Inmunología

ver canal
Imagen: los exosomas pueden ser un biomarcador prometedor para el rechazo celular después del trasplante de órganos (foto cortesía de Nicolas Primola/Shutterstock)

Análisis de sangre para diagnóstico de rechazo celular después de trasplante de órganos podría reemplazar las biopsias quirúrgicas

Los órganos trasplantados enfrentan constantemente el riesgo de ser rechazados por el sistema inmunológico del receptor, que los diferencia de los órganos no propios mediante... Más

Microbiología

ver canal
Imagen: Una prueba de PCR multiplex en tiempo real podría revolucionar la detección temprana de sepsis (foto cortesía de Shutterstock)

Prueba de PCR múltiplex identifica el 95 % de los patógenos que causan la sepsis en una hora

La sepsis contribuye a una de cada tres muertes hospitalarias en los Estados Unidos y, a nivel mundial, el shock séptico conlleva una tasa de mortalidad del 30 al 40 %. El diagnóstico temprano... Más

Patología

ver canal
Imagen: Un nuevo estudio ha identificado patrones que predicen la recaída del cáncer de ovario (foto cortesía de Cedars-Sinai)

Análisis de tejido espacial identifica patrones asociados con la recaída del cáncer de ovario

El carcinoma de ovario seroso de alto grado es el tipo más letal de cáncer de ovario y plantea importantes desafíos de detección. Por lo general, los pacientes responden inicialmente... Más

Tecnología

ver canal
Imagen: el chip optofluídico de nanoporo utilizado en el nuevo sistema de diagnóstico (foto cortesía de UC Santa Cruz)

Nuevo sistema de diagnóstico de laboratorio en un chip iguala la precisión de las pruebas de PCR

Si bien las pruebas de PCR son el estándar de oro en cuanto a precisión para las pruebas de virología, tienen limitaciones como la complejidad, la necesidad de operadores de laboratorio capacitados y tiempos... Más