LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Los investigadores sientan la base para la producción de dispositivos diagnósticos basados en grafeno

Por el equipo editorial de LabMedica en español
Actualizado el 26 Mar 2019
Print article
Imagen: Los investigadores combinaron el grafeno con cintas metálicas de oro de tamaño nanométrico para crear un biosensor ultrasensible que podría ayudar a detectar una variedad de enfermedades en humanos y animales (Fotografía cortesía del Grupo Oh, Universidad de Minnesota).
Imagen: Los investigadores combinaron el grafeno con cintas metálicas de oro de tamaño nanométrico para crear un biosensor ultrasensible que podría ayudar a detectar una variedad de enfermedades en humanos y animales (Fotografía cortesía del Grupo Oh, Universidad de Minnesota).
Un avance en el uso del grafeno como un resonador de plasmones para la espectroscopia infrarroja ultrasensible debería permitir el desarrollo de nuevos biosensores para la detección de enfermedades a nivel molecular.

El grafeno es una forma de carbono que consiste en una sola capa de átomos de carbono dispuestos en una red hexagonal. Es un semimetal con una pequeña superposición entre la valencia y las bandas de conducción. Como tal, se puede considerar como una molécula aromática indefinidamente grande, el máximo caso de la familia de los hidrocarburos aromáticos policíclicos planos. El grafeno es el elemento estructural básico de muchas otras formas de carbono, como el grafito, el carbón, los nanotubos de carbono y los fullerenos. El grafeno tiene muchas propiedades poco comunes, como ser el material más resistente jamás probado, al mismo tiempo que conduce el calor y la electricidad de manera eficiente y casi transparente.

El notable grosor de un solo átomo del grafeno minimiza su eficiencia para interactuar con la luz que se filtra a través de ella. Dado que la absorción de luz y la conversión a campos eléctricos locales es esencial para detectar pequeñas cantidades de moléculas, su estructura ha evitado el uso significativo de grafeno como base para los dispositivos de diagnóstico.

Investigadores de la Universidad de Minnesota (Minneapolis/St. Paul, EUA) combinaron el grafeno con cintas metálicas de oro de tamaño nanométrico. Usando cinta adhesiva y una técnica de nanofabricación de alta tecnología llamada “decapado de plantilla”, crearon una superficie de capa base ultra plana para el grafeno que hizo que el material fuera adecuado para su uso como resonador de plasmones acústicos.

La resonancia de plasmones es un fenómeno que ocurre cuando la luz se refleja en las películas metálicas delgadas, una propiedad que se puede usar para medir la interacción de las biomoléculas en la superficie. Una onda de densidad de carga de electrones surge en la superficie de la película cuando la luz se refleja en la película en condiciones específicas. Una fracción de la energía luminosa que incide en un ángulo definido puede interactuar con los electrones deslocalizados en la película de metal (plasmón), reduciendo la intensidad de la luz reflejada. El ángulo de incidencia en el que ocurre esto está influenciado por el índice de refracción cerca de la parte posterior de la película de metal, a la que se inmovilizan las moléculas diana. Si los ligandos en una fase móvil, que corre a lo largo de una célula de flujo, se unen a las moléculas de la superficie, el índice de refracción local cambia en proporción a la masa que se inmoviliza. Esto se puede monitorizar en tiempo real detectando cambios en la intensidad de la luz reflejada.

Los investigadores informaron que los plasmones acústicos basados en grafeno permitieron mediciones ultrasensibles de bandas de absorción y modos de fonones de superficie en capas de proteína de espesor de ångströms y de SiO2, respectivamente. La plataforma acústica del resonador de plasmones era escalable y podía aprovechar el máximo nivel de interacciones entre luz y materia con una eficiencia de casi el 94% para aplicaciones potenciales, como espectroscopia, detección, metasuperficies y optoelectrónica. Cuando se insertaron moléculas de proteína entre el grafeno y las cintas metálicas, se captó la suficiente energía como para ver las capas individuales de las moléculas de proteínas.

“Para detectar y tratar muchas enfermedades, necesitamos detectar moléculas de proteínas en cantidades muy pequeñas y comprender su estructura”, dijo el autor principal, el Dr. Sang-Hyun Oh, profesor de ingeniería eléctrica e informática en la Universidad de Minnesota. “Actualmente, hay muchos desafíos técnicos con ese proceso. Esperamos que nuestro dispositivo con grafeno y un proceso de fabricación único proporcionen la investigación fundamental que pueda ayudar a superar esos desafíos. Nuestras simulaciones por computadora mostraron que este novedoso enfoque funcionaría, pero aún estábamos un poco sorprendidos cuando alcanzamos el 94% de absorción de luz en los dispositivos reales. Convertir un ideal desde una simulación por computadora tiene muchos desafíos. Todo tiene que ser de tan alta calidad y atómicamente plano. El hecho de que pudiéramos obtener una concordancia tan buena entre la teoría y el experimento fue bastante sorprendente y emocionante”.

Este trabajo fue detallado en la edición digital del 11 de febrero de 2019 de la revista Nature Nanotechnology.

Enlace relacionado:
Universidad de Minnesota

Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Miembro Oro
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Canales

Química Clínica

ver canal
Imagen: El ionizador miniatura impreso en 3D es un componente clave de un espectrómetro de masas (foto cortesía del MIT)

Espectrómetro de masas impreso en 3D para el punto de atención supera a los modelos de última generación

La espectrometría de masas es una técnica precisa para identificar los componentes químicos de una muestra y tiene un potencial significativo para monitorear estados de salud de enfermedades... Más

Hematología

ver canal
Imagen: El ensayo de Procleix Arboplex ha recibido la marca CE (foto cortesía de Grifols)

Primera prueba NAT 4 en 1 para el cribado de arbovirus podría reducir el riesgo de infecciones transmitidas por transfusiones

Los arbovirus representan una amenaza emergente para la salud mundial, exacerbada por el cambio climático y el aumento de la conectividad mundial que está facilitando su propagación a nuevas regiones.... Más

Inmunología

ver canal
Imagen: los exosomas pueden ser un biomarcador prometedor para el rechazo celular después del trasplante de órganos (foto cortesía de Nicolas Primola/Shutterstock)

Análisis de sangre para diagnóstico de rechazo celular después de trasplante de órganos podría reemplazar las biopsias quirúrgicas

Los órganos trasplantados enfrentan constantemente el riesgo de ser rechazados por el sistema inmunológico del receptor, que los diferencia de los órganos no propios mediante... Más

Microbiología

ver canal
Imagen: Una prueba de PCR multiplex en tiempo real podría revolucionar la detección temprana de sepsis (foto cortesía de Shutterstock)

Prueba de PCR múltiplex identifica el 95 % de los patógenos que causan la sepsis en una hora

La sepsis contribuye a una de cada tres muertes hospitalarias en los Estados Unidos y, a nivel mundial, el shock séptico conlleva una tasa de mortalidad del 30 al 40 %. El diagnóstico temprano... Más

Patología

ver canal
Imagen: Un nuevo estudio ha identificado patrones que predicen la recaída del cáncer de ovario (foto cortesía de Cedars-Sinai)

Análisis de tejido espacial identifica patrones asociados con la recaída del cáncer de ovario

El carcinoma de ovario seroso de alto grado es el tipo más letal de cáncer de ovario y plantea importantes desafíos de detección. Por lo general, los pacientes responden inicialmente... Más

Tecnología

ver canal
Imagen: el chip optofluídico de nanoporo utilizado en el nuevo sistema de diagnóstico (foto cortesía de UC Santa Cruz)

Nuevo sistema de diagnóstico de laboratorio en un chip iguala la precisión de las pruebas de PCR

Si bien las pruebas de PCR son el estándar de oro en cuanto a precisión para las pruebas de virología, tienen limitaciones como la complejidad, la necesidad de operadores de laboratorio capacitados y tiempos... Más