Plataforma de biodetección combinada con aprendizaje automático permite detección de Alzheimer mínimamente invasiva
Por el equipo editorial de LabMedica en español Actualizado el 31 Oct 2022 |

La enfermedad de Alzheimer es un trastorno neurodegenerativo grave caracterizado por cambios progresivos en la memoria, deterioro cognitivo y cambios en la personalidad, que pueden evolucionar hacia la demencia y la muerte. La detección temprana permite a los médicos dar tratamientos e intervenciones oportunas para el paciente. Actualmente, los médicos se basan en varios biomarcadores (sustancias en un organismo que pueden indicar la existencia de una enfermedad o condición) para detectar la enfermedad de Alzheimer. Sin embargo, recopilar datos que informen sobre estos biomarcadores es costoso y puede llevar mucho tiempo. Ahora, un sistema de aprendizaje automático que se está desarrollando podría proporcionar un enfoque mínimamente invasivo para detectar la enfermedad de Alzheimer lo antes posible.
Un equipo de investigadores dirigido por Penn State (University Park, PA, EUA) recibió una subvención de 1,2 millones de dólares de los Institutos Nacionales de Salud (NIH, Bethesda, MD, EUA) para ayudar a financiar un proyecto para desarrollar un sistema de aprendizaje automático para la detección temprana de la enfermedad de Alzheimer. El equipo de investigación planea diseñar un sistema que utilice una variedad de biosensores, incluidos nanosensores ópticos, mecánicos y electroquímicos, que pueden analizar muestras biológicas. Según los investigadores, los datos de biodetección coinciden bien con las capacidades de las técnicas de aprendizaje automático y la combinación de las dos tecnologías podría incluso allanar el camino a nuevos descubrimientos para otras afecciones y enfermedades. Actualmente, el equipo está analizando muestras biológicas de animales, pero, si estas investigaciones iniciales tienen éxito, los investigadores pasarán a estudiar muestras biológicas humanas.
"Al integrar una plataforma de biodetección multimodal y un marco de aprendizaje automático, esperamos que el sistema mejore la detección temprana de la enfermedad de Alzheimer y mejore la precisión de la detección de EA", dijo Fenglong Ma, profesor asistente de ciencias y tecnología de la información y un co-contratado en el Instituto de Computación y Ciencias de Datos. “La plataforma de biodetección generará diferentes tipos de datos de detección, y el aprendizaje automático tiene como objetivo analizar estos datos para predecir la enfermedad de Alzheimer en la etapa inicial. Dado que los datos de detección son tan diversos o heterogéneos, las técnicas avanzadas de aprendizaje automático pueden ayudar a modelar dichos datos. Además, el aprendizaje automático puede ayudarnos a identificar algunos biomarcadores nuevos de EA”.
"Dados diferentes tipos de datos de detección, por ejemplo, datos adquiridos de diferentes marcadores bioquímicos en fluidos corporales humanos, el aprendizaje automático puede realizar una selección de características y establecer asociaciones entre un biomarcador individual y la enfermedad de Alzheimer, o entre un conjunto de biomarcadores y la enfermedad", dijo Sharon Huang, profesora de ciencias y tecnología de la información y cocontratada en los Institutos Huck de Ciencias de la Vida. “Esperamos que nuestro proyecto pueda resultar en una técnica mínimamente invasiva que pueda detectar la enfermedad de Alzheimer en sus primeras etapas. La técnica también tiene el potencial de ser de alto rendimiento, lo que hace posible su uso en la detección de la enfermedad. También haremos todo lo posible para que la técnica sea precisa, reduciendo los falsos positivos y los falsos negativos en la detección de EA”.
Enlaces relacionados:
Penn State
NIH
Últimas Tecnología noticias
- Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
- Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
- Teléfonos inteligentes podrían diagnosticar enfermedades mediante escáneres infrarrojos
- Nueva tecnología de sensores permite diagnóstico temprano de trastornos metabólicos y cardiovasculares
- Avance en impresión 3D permite desarrollo a gran escala de diminutos dispositivos microfluídicos
- Plataforma de sensores en papel transforma diagnóstico cardíaco
- Estudio explora impacto de pruebas POC en el futuro de los diagnósticos
- Sensor económico de respuesta rápida permite detección temprana y precisa del cáncer de pulmón
- Nanotecnología para diagnósticar cáncer de cuello uterino podría sustituir pruebas de Papanicolaou
- Plataforma de laboratorio en chip agilizar diagnóstico del cáncer
- Plataforma de biosensores detecta simultáneamente vitamina C y SARS-CoV-2
- Nuevo método analiza lágrimas para detectar enfermedades de forma temprana
- Sensores basados en FET abren camino a dispositivos de diagnóstico portátiles para detectar múltiples enfermedades
- Biosensor basado en papel para detectar glucosa mediante sudor revoluciona tratamiento de diabetes
- Análisis de sangre con IA identifica pacientes en etapa más temprana del cáncer de mama
- Biosensor óptico detecta virus de la viruela del mono en POC
Canales
Química Clínica
ver canal
Nanotubos de carbono ayudan a construir sensores precisos para monitoreo continuo de la salud
Los sensores actuales pueden medir diversos indicadores de salud, como los niveles de glucosa en sangre. Sin embargo, es necesario desarrollar materiales para sensores más precisos y sensibles que... Más
Dispositivo basado en papel mejora la precisión de prueba del VIH
En las regiones donde el acceso a las clínicas para realizar análisis de sangre rutinarios presenta obstáculos financieros y logísticos, los pacientes con VIH pueden recolectar... MásDiagnóstico Molecular
ver canal
Prueba basada en ARN detecta riesgo de preeclampsia antes de síntomas
La preeclampsia sigue siendo una causa importante de morbilidad y mortalidad materna, así como de partos prematuros. A pesar de las directrices actuales que buscan identificar a las embarazadas... Más
Primera prueba que utiliza microARN para predecir toxicidad de terapia contra el cáncer
Muchos hombres con cáncer de próstata en etapa temprana reciben radioterapia corporal estereotáctica (RTCE), un tratamiento de radiación de alta precisión que se completa... Más
Ensayo basado en células proporciona detección sensible y específica de autoanticuerpos en desmielinización
Los anticuerpos anti-glicoproteína asociada a la mielina (MAG) sirven como marcadores de un trastorno desmielinizante autoinmune que afecta al sistema nervioso periférico y provoca deterioro sensorial.... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásPatología
ver canal
Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
La miastenia gravis, una enfermedad autoinmune, provoca debilidad muscular que puede afectar a diversos músculos, incluidos los necesarios para acciones básicas como parpadear, sonreír... Más
Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
El adenocarcinoma de pulmón, la forma más común de cáncer de pulmón de células no pequeñas (CPCNP), suele adoptar uno de seis patrones de crecimiento distintos,... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más