Modelo de IA que funciona sin supervisión predice la supervivencia de los pacientes de COVID-19 con base en los exámenes de TC del tórax
Por el equipo editorial de LabMedica en español Actualizado el 16 Aug 2021 |

ilustración
Un modelo de inteligencia artificial (IA) “sin supervisión”, o uno entrenado sin anotaciones de imagen, puede predecir con exactitud la supervivencia de los pacientes con COVID-19 sobre la base de sus exámenes de tomografía computarizada (TC) de tórax.
Investigadores del Hospital General de Massachusetts (Boston, MA, EUA) demostraron que el desempeño de su algoritmo pix2surv basado en imágenes de TC superó significativamente al de las pruebas de laboratorio existentes y los predictores visuales y cuantitativos basados en imágenes para determinar la progresión de la enfermedad y la mortalidad de los pacientes con COVID-19. Por lo tanto, pix2surv ofrece un enfoque prometedor para realizar predicciones de pronóstico basadas en imágenes.
Debido a la rápida propagación y la amplia gama de manifestaciones clínicas de la enfermedad por coronavirus 2019 (COVID-19), la estimación rápida y exacta de la progresión de la enfermedad y la mortalidad es vital para el manejo de los pacientes. Los predictores de pronóstico basados en imágenes disponibles actualmente para pacientes con COVID-19 se limitan en gran medida a esquemas semiautomatizados con funciones diseñadas manualmente y aprendizaje supervisado, y el análisis de supervivencia se limita en gran medida a la regresión logística. Para resolver este problema, los investigadores desarrollaron una red adversarial generativa condicional débilmente no supervisada, llamada pix2surv, que se puede entrenar para determinar la información del tiempo transcurrido hasta el evento para el análisis de supervivencia directamente a partir de las imágenes de TC de tórax de un paciente.
pix2surv permite estimar la distribución del tiempo de supervivencia directamente a partir de las imágenes de TC de tórax de los pacientes. El modelo evita las limitaciones técnicas de los predictores de COVID-19 basados en imágenes anteriores, porque el uso de una GAN condicional totalmente automatizada hace posible entrenar un modelo completo de análisis de supervivencia de extremo-a-extremo con base en imágenes para producir la distribución del tiempo hasta el evento directamente a partir de la información obtenida de las imágenes de TC de tórax sin una segmentación explícita o esfuerzos de extracción de características. Además, debido al uso de aprendizaje débilmente no supervisado, el esfuerzo de anotación se reduce al emparejamiento de imágenes de TC de entrenamiento de entrada con el tiempo de supervivencia observado correspondiente del paciente.
En su estudio, los investigadores demostraron que el desempeño pronóstico de pix2surv, basado en imágenes de TC de tórax, se compara favorablemente con los de las pruebas de laboratorio actualmente disponibles y los predictores visuales y cuantitativos basados en imágenes existentes para la estimación de la progresión de la enfermedad y la mortalidad de los pacientes con COVID-19. También demostraron que la información del tiempo transcurrido hasta el evento calculada por pix2surv basada en imágenes de TC de tórax permite la estratificación de los pacientes en grupos de bajo y alto riesgo por un margen más amplio que los de los otros predictores. Por lo tanto, pix2surv ofrece un método prometedor para realizar predicciones de pronóstico basadas en imágenes para el manejo de pacientes con COVID-19.
Enlace relacionado:
Hospital General de Massachusetts
Investigadores del Hospital General de Massachusetts (Boston, MA, EUA) demostraron que el desempeño de su algoritmo pix2surv basado en imágenes de TC superó significativamente al de las pruebas de laboratorio existentes y los predictores visuales y cuantitativos basados en imágenes para determinar la progresión de la enfermedad y la mortalidad de los pacientes con COVID-19. Por lo tanto, pix2surv ofrece un enfoque prometedor para realizar predicciones de pronóstico basadas en imágenes.
Debido a la rápida propagación y la amplia gama de manifestaciones clínicas de la enfermedad por coronavirus 2019 (COVID-19), la estimación rápida y exacta de la progresión de la enfermedad y la mortalidad es vital para el manejo de los pacientes. Los predictores de pronóstico basados en imágenes disponibles actualmente para pacientes con COVID-19 se limitan en gran medida a esquemas semiautomatizados con funciones diseñadas manualmente y aprendizaje supervisado, y el análisis de supervivencia se limita en gran medida a la regresión logística. Para resolver este problema, los investigadores desarrollaron una red adversarial generativa condicional débilmente no supervisada, llamada pix2surv, que se puede entrenar para determinar la información del tiempo transcurrido hasta el evento para el análisis de supervivencia directamente a partir de las imágenes de TC de tórax de un paciente.
pix2surv permite estimar la distribución del tiempo de supervivencia directamente a partir de las imágenes de TC de tórax de los pacientes. El modelo evita las limitaciones técnicas de los predictores de COVID-19 basados en imágenes anteriores, porque el uso de una GAN condicional totalmente automatizada hace posible entrenar un modelo completo de análisis de supervivencia de extremo-a-extremo con base en imágenes para producir la distribución del tiempo hasta el evento directamente a partir de la información obtenida de las imágenes de TC de tórax sin una segmentación explícita o esfuerzos de extracción de características. Además, debido al uso de aprendizaje débilmente no supervisado, el esfuerzo de anotación se reduce al emparejamiento de imágenes de TC de entrenamiento de entrada con el tiempo de supervivencia observado correspondiente del paciente.
En su estudio, los investigadores demostraron que el desempeño pronóstico de pix2surv, basado en imágenes de TC de tórax, se compara favorablemente con los de las pruebas de laboratorio actualmente disponibles y los predictores visuales y cuantitativos basados en imágenes existentes para la estimación de la progresión de la enfermedad y la mortalidad de los pacientes con COVID-19. También demostraron que la información del tiempo transcurrido hasta el evento calculada por pix2surv basada en imágenes de TC de tórax permite la estratificación de los pacientes en grupos de bajo y alto riesgo por un margen más amplio que los de los otros predictores. Por lo tanto, pix2surv ofrece un método prometedor para realizar predicciones de pronóstico basadas en imágenes para el manejo de pacientes con COVID-19.
Enlace relacionado:
Hospital General de Massachusetts
Últimas COVID-19 noticias
- Inmunosensor nuevo allana el camino para pruebas rápidas POC para COVID-19 y enfermedades infecciosas emergentes
- Encuentran etiologías de COVID prolongada en muestras de sangre con infección aguda
- Dispositivo novedoso detecta anticuerpos contra la COVID-19 en cinco minutos
- Prueba para COVID-19 mediante CRISPR detecta SARS-CoV-2 en 30 minutos usando tijeras genéticas
- Asocian disbiosis del microbioma intestinal con la COVID-19
- Validan prueba rápida novedosa de antígeno para el SARS-CoV-2 con respecto a su exactitud diagnóstica
- Prueba nueva COVID + Influenza + VSR ayudará a estar preparados para la ‘tripledemia’
- IA elimina las conjeturas de las pruebas de flujo lateral
- Prueba de antígeno del SARS-CoV-2 más rápida, jamás diseñada, permite realizar pruebas de COVID-19 no invasivas en cualquier entorno
- Pruebas rápidas de antígeno detectan las variantes ómicron, delta del SARS-CoV-2
- Prueba en sangre realizada durante la infección inicial predice el riesgo de COVID prolongada
- Investigadores afirman que hay que crear “reservistas” de laboratorio para responder más rápidamente a la próxima pandemia
- Estudio encuentra que los profesionales sanitarios mostraron mayor interés en tecnologías POC durante la pandemia
- Plataforma de análisis de bajo costo para la COVID-19 combina sensibilidad de la PCR y velocidad de pruebas de antígeno
- Prueba de sangre por punción digital identifica inmunidad a la COVID-19
- Kit de prueba rápida determina inmunidad contra la COVID-19 y sus variantes
Canales
Química Clínica
ver canal
Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma
El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... MásDiagnóstico Molecular
ver canal
Herramienta genética predice supervivencia de pacientes con cáncer de páncreas
Un marcador tumoral es una sustancia presente en el organismo que puede indicar la presencia de cáncer. Estas sustancias, que pueden incluir proteínas, genes, moléculas u otros compuestos... Más
Prueba de orina diagnostica cáncer de próstata inicial
El cáncer de próstata es una de las principales causas de muerte en hombres a nivel mundial. Un desafío importante para diagnosticar la enfermedad es la ausencia de biomarcadores confiables... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Nueva prueba diagnostica meningitis bacteriana con rapidez y precisión
La meningitis bacteriana es una afección potencialmente mortal: uno de cada seis pacientes fallece y la mitad de los supervivientes experimentan síntomas persistentes. Por lo tanto, un d... Más
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... MásPatología
ver canal
Modelo de IA predice respuesta a terapia contra cáncer de riñón
Cada año, cerca de 435.000 personas son diagnosticadas con carcinoma renal de células claras (CRcc), lo que lo convierte en el subtipo más prevalente de cáncer de riñón.... Más
Kits de ensayo de enzima DUB sensibles y específicos requieren configuración mínima sin preparación del sustrato
La ubiquitinación y la desubiquitinación son dos procesos fisiológicos importantes en el sistema ubiquitina-proteasoma, responsable de la degradación de proteínas en... MásTecnología
ver canal
Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos
Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más