Análisis mediante IA predice la trayectoria diaria de los pacientes con COVID-19 en las unidades de cuidado intensivo
Por el equipo editorial de LabMedica en español Actualizado el 13 May 2021 |

Ilustración
Los investigadores han utilizado inteligencia artificial (IA) para identificar qué parámetros clínicos cambiantes diarios predicen mejor las respuestas de intervención en pacientes con COVID-19 críticamente enfermos.
Los investigadores del Colegio Imperial de Londres (Londres, Reino Unido) utilizaron el aprendizaje automático para predecir qué pacientes podrían empeorar y no responder positivamente a la posición prona en las unidades de cuidados intensivos (UCI), una técnica que se usa comúnmente para mejorar la oxigenación de los pulmones. La posición de decúbito prono se utiliza en las UCI para ayudar a mejorar la oxigenación de la sangre en personas con síndrome de dificultad respiratoria aguda grave y se ha utilizado ampliamente durante la pandemia. Sin embargo, el estudio encontró que la pronación no ayudó a todos los pacientes con COVID-19 y, cuando se usa en pacientes que no se beneficiarán, puede retrasar el inicio de otros tratamientos secuenciales como el uso de oxigenación por membrana extracorpórea (ECMO), una máquina de soporte vital que asume la función del corazón y los pulmones para oxigenar la sangre y bombearla por todo el cuerpo.
Este fue el primer estudio que examina los datos diarios de los pacientes con COVID-19, utilizando IA para comprender la respuesta clínica a las necesidades rápidamente cambiantes de los pacientes en las UCI. Los investigadores analizaron datos de 633 pacientes con COVID-19 ventilados mecánicamente en 20 UCI del Reino Unido durante la primera ola del brote de COVID-19 (del 1 de marzo al 31 de agosto de 2020). Examinaron la importancia de los factores asociados con la progresión de la enfermedad, como los coágulos de sangre y la inflamación en los pulmones, así como los tratamientos administrados y si el paciente finalmente murió o fue dado de alta. Utilizaron estos datos, que fueron recopilados diariamente por legiones de estudiantes de medicina, enfermeras, médicos, personal de auditoría, investigación y datos, para diseñar y entrenar la herramienta de inteligencia artificial que luego hizo predicciones sobre factores que determinan los resultados.
Los nuevos hallazgos mostraron que el modelo de IA identificó factores que determinaron qué pacientes tenían probabilidades de empeorar y no responder a intervenciones como la posición prona. Los investigadores encontraron que, durante la primera ola de la pandemia, los pacientes con coágulos de sangre o inflamación en los pulmones, niveles más bajos de oxígeno, presión arterial más baja y niveles más bajos de lactato tenían menos probabilidades de beneficiarse de la pronación. En general, la pronación mejoró la oxigenación en solo el 44% de los pacientes.
Si bien el modelo de IA se utilizó en una cohorte retrospectiva de datos de pacientes recopilados durante la primera ola de la pandemia, el estudio demuestra la capacidad de los métodos de IA para predecir los resultados de los pacientes utilizando información clínica de rutina utilizada por los médicos de la UCI. Los investigadores dicen que el enfoque, en el que los datos de cada paciente se analizaron día a día en lugar de solo al ingreso, podría usarse para mejorar las pautas en la práctica clínica en el futuro. Se podría aplicar a posibles oleadas futuras de la pandemia y otras enfermedades tratadas en entornos clínicos similares.
Los investigadores continúan recopilando datos de pacientes y actualmente analizan los hallazgos de la segunda ola de la pandemia. Señalan que en la primera ola había tratamientos farmacológicos limitados disponibles, por lo que es posible que más pacientes con COVID-19 hayan sido asignados directamente a la UCI para recibir apoyo respiratorio. Sin embargo, en la segunda ola, estaban más disponibles los tratamientos probados como los esteroides y el tocilizumab, por lo que los que progresaron a la UCI tenían un perfil de enfermedad diferente, ya que eran pacientes inherentemente resistentes a estos tratamientos farmacológicos iniciales.
“El análisis avanzado para permitir el seguimiento de la enfermedad permite optimizar la atención de los pacientes para que no se pierda la oportunidad de cualquier intervención”, dijo el primer autor y director científico clínico, el Dr. Brijesh Patel, del Departamento de Cirugía y Cáncer del Imperial e intensivista senior en el Hospital Real Brompton. “Los datos de esta evaluación nacional nos permitieron no solo examinar cómo nuestras decisiones de manejo afectaron el curso de la enfermedad, sino también, de manera importante, dónde podríamos mejorar”.
“Nuestra herramienta de aprendizaje automático podría ayudar a rastrear el progreso de los pacientes en tiempo real y ayudar a informar las pautas de la UCI al llenar los vacíos en la atención al paciente, reflejándose en los médicos para identificar las mejores prácticas rápidamente y beneficiarse del intercambio”, dijo el autor principal y líder de ciencia de datos, el profesor Aldo Faisal, director del Centro UKRI de Imperial para la formación de doctorado en inteligencia artificial para el cuidado de la salud en los departamentos de informática y bioingeniería. “Más de un año después, todavía aprendemos cómo el curso de COVID-19 afecta al cuerpo y cómo esto puede cambiar día a día. La ciencia de datos y la alimentación diaria de datos de las UCI de todo el país nos ayudan a aprender mucho más rápido cuál es la mejor manera de tratar a los pacientes individuales en función de sus síntomas y necesidades diarias”.
Enlace relacionado:
Colegio Imperial de Londres
Los investigadores del Colegio Imperial de Londres (Londres, Reino Unido) utilizaron el aprendizaje automático para predecir qué pacientes podrían empeorar y no responder positivamente a la posición prona en las unidades de cuidados intensivos (UCI), una técnica que se usa comúnmente para mejorar la oxigenación de los pulmones. La posición de decúbito prono se utiliza en las UCI para ayudar a mejorar la oxigenación de la sangre en personas con síndrome de dificultad respiratoria aguda grave y se ha utilizado ampliamente durante la pandemia. Sin embargo, el estudio encontró que la pronación no ayudó a todos los pacientes con COVID-19 y, cuando se usa en pacientes que no se beneficiarán, puede retrasar el inicio de otros tratamientos secuenciales como el uso de oxigenación por membrana extracorpórea (ECMO), una máquina de soporte vital que asume la función del corazón y los pulmones para oxigenar la sangre y bombearla por todo el cuerpo.
Este fue el primer estudio que examina los datos diarios de los pacientes con COVID-19, utilizando IA para comprender la respuesta clínica a las necesidades rápidamente cambiantes de los pacientes en las UCI. Los investigadores analizaron datos de 633 pacientes con COVID-19 ventilados mecánicamente en 20 UCI del Reino Unido durante la primera ola del brote de COVID-19 (del 1 de marzo al 31 de agosto de 2020). Examinaron la importancia de los factores asociados con la progresión de la enfermedad, como los coágulos de sangre y la inflamación en los pulmones, así como los tratamientos administrados y si el paciente finalmente murió o fue dado de alta. Utilizaron estos datos, que fueron recopilados diariamente por legiones de estudiantes de medicina, enfermeras, médicos, personal de auditoría, investigación y datos, para diseñar y entrenar la herramienta de inteligencia artificial que luego hizo predicciones sobre factores que determinan los resultados.
Los nuevos hallazgos mostraron que el modelo de IA identificó factores que determinaron qué pacientes tenían probabilidades de empeorar y no responder a intervenciones como la posición prona. Los investigadores encontraron que, durante la primera ola de la pandemia, los pacientes con coágulos de sangre o inflamación en los pulmones, niveles más bajos de oxígeno, presión arterial más baja y niveles más bajos de lactato tenían menos probabilidades de beneficiarse de la pronación. En general, la pronación mejoró la oxigenación en solo el 44% de los pacientes.
Si bien el modelo de IA se utilizó en una cohorte retrospectiva de datos de pacientes recopilados durante la primera ola de la pandemia, el estudio demuestra la capacidad de los métodos de IA para predecir los resultados de los pacientes utilizando información clínica de rutina utilizada por los médicos de la UCI. Los investigadores dicen que el enfoque, en el que los datos de cada paciente se analizaron día a día en lugar de solo al ingreso, podría usarse para mejorar las pautas en la práctica clínica en el futuro. Se podría aplicar a posibles oleadas futuras de la pandemia y otras enfermedades tratadas en entornos clínicos similares.
Los investigadores continúan recopilando datos de pacientes y actualmente analizan los hallazgos de la segunda ola de la pandemia. Señalan que en la primera ola había tratamientos farmacológicos limitados disponibles, por lo que es posible que más pacientes con COVID-19 hayan sido asignados directamente a la UCI para recibir apoyo respiratorio. Sin embargo, en la segunda ola, estaban más disponibles los tratamientos probados como los esteroides y el tocilizumab, por lo que los que progresaron a la UCI tenían un perfil de enfermedad diferente, ya que eran pacientes inherentemente resistentes a estos tratamientos farmacológicos iniciales.
“El análisis avanzado para permitir el seguimiento de la enfermedad permite optimizar la atención de los pacientes para que no se pierda la oportunidad de cualquier intervención”, dijo el primer autor y director científico clínico, el Dr. Brijesh Patel, del Departamento de Cirugía y Cáncer del Imperial e intensivista senior en el Hospital Real Brompton. “Los datos de esta evaluación nacional nos permitieron no solo examinar cómo nuestras decisiones de manejo afectaron el curso de la enfermedad, sino también, de manera importante, dónde podríamos mejorar”.
“Nuestra herramienta de aprendizaje automático podría ayudar a rastrear el progreso de los pacientes en tiempo real y ayudar a informar las pautas de la UCI al llenar los vacíos en la atención al paciente, reflejándose en los médicos para identificar las mejores prácticas rápidamente y beneficiarse del intercambio”, dijo el autor principal y líder de ciencia de datos, el profesor Aldo Faisal, director del Centro UKRI de Imperial para la formación de doctorado en inteligencia artificial para el cuidado de la salud en los departamentos de informática y bioingeniería. “Más de un año después, todavía aprendemos cómo el curso de COVID-19 afecta al cuerpo y cómo esto puede cambiar día a día. La ciencia de datos y la alimentación diaria de datos de las UCI de todo el país nos ayudan a aprender mucho más rápido cuál es la mejor manera de tratar a los pacientes individuales en función de sus síntomas y necesidades diarias”.
Enlace relacionado:
Colegio Imperial de Londres
Últimas COVID-19 noticias
- Inmunosensor nuevo allana el camino para pruebas rápidas POC para COVID-19 y enfermedades infecciosas emergentes
- Encuentran etiologías de COVID prolongada en muestras de sangre con infección aguda
- Dispositivo novedoso detecta anticuerpos contra la COVID-19 en cinco minutos
- Prueba para COVID-19 mediante CRISPR detecta SARS-CoV-2 en 30 minutos usando tijeras genéticas
- Asocian disbiosis del microbioma intestinal con la COVID-19
- Validan prueba rápida novedosa de antígeno para el SARS-CoV-2 con respecto a su exactitud diagnóstica
- Prueba nueva COVID + Influenza + VSR ayudará a estar preparados para la ‘tripledemia’
- IA elimina las conjeturas de las pruebas de flujo lateral
- Prueba de antígeno del SARS-CoV-2 más rápida, jamás diseñada, permite realizar pruebas de COVID-19 no invasivas en cualquier entorno
- Pruebas rápidas de antígeno detectan las variantes ómicron, delta del SARS-CoV-2
- Prueba en sangre realizada durante la infección inicial predice el riesgo de COVID prolongada
- Investigadores afirman que hay que crear “reservistas” de laboratorio para responder más rápidamente a la próxima pandemia
- Estudio encuentra que los profesionales sanitarios mostraron mayor interés en tecnologías POC durante la pandemia
- Plataforma de análisis de bajo costo para la COVID-19 combina sensibilidad de la PCR y velocidad de pruebas de antígeno
- Prueba de sangre por punción digital identifica inmunidad a la COVID-19
- Kit de prueba rápida determina inmunidad contra la COVID-19 y sus variantes
Canales
Química Clínica
ver canalEspectrometría de masas detecta bacterias sin necesidad de aislarlas ni multiplicarlas
La rapidez y la precisión son esenciales para diagnosticar enfermedades. Tradicionalmente, diagnosticar infecciones bacterianas implicaba el laborioso proceso de aislar patógenos y realizar... Más
Primera prueba integral de sífilis diagnostica definitivamente infección activa en 10 minutos
En Estados Unidos, los casos de sífilis aumentaron casi un 80 % entre 2018 y 2023, con 209.253 casos registrados en el último año con datos. La sífilis, que puede transmitirse... MásDiagnóstico Molecular
ver canal
Nueva etiqueta molecular desarrolla pruebas de tuberculosis más sencillas y rápidas
La tuberculosis (TB), la enfermedad infecciosa más mortal a nivel mundial, infecta a aproximadamente 10 millones de personas cada año y causa más de un millón de muertes al año.... Más
Descubrimiento de biomarcador abre camino para que análisis de sangre detecten y traten osteoartritis
Se proyecta que el número de personas afectadas por osteoartritis superará los mil millones para 2050. El principal factor de riesgo para esta afección articular crónica, común... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Nueva prueba diagnostica meningitis bacteriana con rapidez y precisión
La meningitis bacteriana es una afección potencialmente mortal: uno de cada seis pacientes fallece y la mitad de los supervivientes experimentan síntomas persistentes. Por lo tanto, un d... Más
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... MásPatología
ver canal
Enfoque de biopsia líquida basado en IA revolucionará detección del cáncer cerebral
Detectar cánceres cerebrales sigue siendo extremadamente difícil, ya que muchos pacientes solo reciben un diagnóstico en etapas avanzadas, tras la aparición de síntomas... Más
Análisis de imágenes de patología digital con IA mejora subtipificación del sarcoma pediátrico
Los sarcomas pediátricos son tumores poco frecuentes y diversos que pueden desarrollarse en varios tipos de tejidos blandos, como músculos, tendones, grasa, vasos sanguíneos o lin... MásTecnología
ver canal
Algoritmo de firma de luz permite diagnósticos médicos más rápidos y precisos
Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más