Tecnología nueva de aprendizaje automático analiza las historias clínicas electrónicas para predecir la mortalidad en los pacientes de COVID-19
Por el equipo editorial de LabMedica en español Actualizado el 20 Jan 2021 |

Ilustración
Los investigadores han utilizado una técnica de aprendizaje automático llamada “aprendizaje federado” para examinar las historias clínicas electrónicas y predecir mejor cómo progresarán los pacientes con COVID-19.
Los investigadores del Sistema de Salud de Monte Sinaí (Nueva York, NY, EUA) quienes crearon modelos utilizando el aprendizaje federado para mejorar las predicciones de los resultados de COVID-19, creen que la técnica emergente promete crear modelos de aprendizaje automático más sólidos que se extienden más allá de un solo sistema de salud sin comprometer la privacidad de los pacientes. Estos modelos, a su vez, pueden ayudar a clasificar a los pacientes y mejorar la calidad de su atención.
El aprendizaje federado es una técnica que entrena un algoritmo en varios dispositivos o servidores que contienen muestras de datos locales, pero evita la agregación de datos clínicos, lo cual no es deseable por razones que incluyen problemas de privacidad de los pacientes. Los investigadores de Monte Sinaí implementaron y evaluaron modelos de aprendizaje federados utilizando datos de historias clínicas electrónicas de cinco hospitales separados dentro del Sistema de Salud para predecir la mortalidad en pacientes con COVID-19. Compararon el desempeño de un modelo federado con los construidos con datos de cada hospital por separado, conocidos como modelos locales. Después de entrenar sus modelos en una red federada y probar los datos de los modelos locales en cada hospital, los investigadores encontraron que los modelos federados demostraron un mayor poder predictivo y superaron a los modelos locales en la mayoría de los hospitales.
“Los modelos de aprendizaje automático en el cuidado de la salud a menudo requieren datos diversos y a gran escala para ser robustos y traducibles por fuera de la población de pacientes de la que fueron entrenados”, dijo el autor correspondiente del estudio, Benjamin Glicksberg, PhD, profesor asistente de genética y ciencias genómicas en la Facultad de Medicina Icahn en Monte Sinaí, y miembro del Instituto Hasso Plattner para la Salud Digital en Monte Sinaí y el Centro de Inteligencia Clínica Monte Sinaí. “El aprendizaje federado ha ganado terreno dentro del espacio biomédico como una forma para que los modelos aprendan de muchas fuentes sin exponer ningún dato sensible del paciente. En nuestro trabajo, demostramos que esta estrategia puede ser particularmente útil en situaciones como la COVID-19”.
“El aprendizaje automático en el cuidado de la salud sufre de una crisis de reproducibilidad”, dijo el primer autor del estudio, Akhil Vaid, MD, becario postdoctoral en el Departamento de Genética y Ciencias Genómicas de la Facultad de Medicina Icahn en Monte Sinaí, y miembro del Instituto Hasso Plattner para Salud Digital en Monte Sinaí y el Centro de Inteligencia Clínica Monte Sinaí. “Esperamos que este trabajo muestre los beneficios y las limitaciones del uso del aprendizaje federado con historias clínicas electrónicas para una enfermedad que tiene una escasez relativa de datos en un hospital individual. Los modelos construidos con este enfoque federado superan a los construidos por separado de tamaños de muestra limitados de hospitales aislados. Será emocionante ver los resultados de iniciativas más grandes de este tipo”.
Enlace relacionado:
Sistema de Salud de Monte Sinaí
Los investigadores del Sistema de Salud de Monte Sinaí (Nueva York, NY, EUA) quienes crearon modelos utilizando el aprendizaje federado para mejorar las predicciones de los resultados de COVID-19, creen que la técnica emergente promete crear modelos de aprendizaje automático más sólidos que se extienden más allá de un solo sistema de salud sin comprometer la privacidad de los pacientes. Estos modelos, a su vez, pueden ayudar a clasificar a los pacientes y mejorar la calidad de su atención.
El aprendizaje federado es una técnica que entrena un algoritmo en varios dispositivos o servidores que contienen muestras de datos locales, pero evita la agregación de datos clínicos, lo cual no es deseable por razones que incluyen problemas de privacidad de los pacientes. Los investigadores de Monte Sinaí implementaron y evaluaron modelos de aprendizaje federados utilizando datos de historias clínicas electrónicas de cinco hospitales separados dentro del Sistema de Salud para predecir la mortalidad en pacientes con COVID-19. Compararon el desempeño de un modelo federado con los construidos con datos de cada hospital por separado, conocidos como modelos locales. Después de entrenar sus modelos en una red federada y probar los datos de los modelos locales en cada hospital, los investigadores encontraron que los modelos federados demostraron un mayor poder predictivo y superaron a los modelos locales en la mayoría de los hospitales.
“Los modelos de aprendizaje automático en el cuidado de la salud a menudo requieren datos diversos y a gran escala para ser robustos y traducibles por fuera de la población de pacientes de la que fueron entrenados”, dijo el autor correspondiente del estudio, Benjamin Glicksberg, PhD, profesor asistente de genética y ciencias genómicas en la Facultad de Medicina Icahn en Monte Sinaí, y miembro del Instituto Hasso Plattner para la Salud Digital en Monte Sinaí y el Centro de Inteligencia Clínica Monte Sinaí. “El aprendizaje federado ha ganado terreno dentro del espacio biomédico como una forma para que los modelos aprendan de muchas fuentes sin exponer ningún dato sensible del paciente. En nuestro trabajo, demostramos que esta estrategia puede ser particularmente útil en situaciones como la COVID-19”.
“El aprendizaje automático en el cuidado de la salud sufre de una crisis de reproducibilidad”, dijo el primer autor del estudio, Akhil Vaid, MD, becario postdoctoral en el Departamento de Genética y Ciencias Genómicas de la Facultad de Medicina Icahn en Monte Sinaí, y miembro del Instituto Hasso Plattner para Salud Digital en Monte Sinaí y el Centro de Inteligencia Clínica Monte Sinaí. “Esperamos que este trabajo muestre los beneficios y las limitaciones del uso del aprendizaje federado con historias clínicas electrónicas para una enfermedad que tiene una escasez relativa de datos en un hospital individual. Los modelos construidos con este enfoque federado superan a los construidos por separado de tamaños de muestra limitados de hospitales aislados. Será emocionante ver los resultados de iniciativas más grandes de este tipo”.
Enlace relacionado:
Sistema de Salud de Monte Sinaí
Últimas COVID-19 noticias
- Inmunosensor nuevo allana el camino para pruebas rápidas POC para COVID-19 y enfermedades infecciosas emergentes
- Encuentran etiologías de COVID prolongada en muestras de sangre con infección aguda
- Dispositivo novedoso detecta anticuerpos contra la COVID-19 en cinco minutos
- Prueba para COVID-19 mediante CRISPR detecta SARS-CoV-2 en 30 minutos usando tijeras genéticas
- Asocian disbiosis del microbioma intestinal con la COVID-19
- Validan prueba rápida novedosa de antígeno para el SARS-CoV-2 con respecto a su exactitud diagnóstica
- Prueba nueva COVID + Influenza + VSR ayudará a estar preparados para la ‘tripledemia’
- IA elimina las conjeturas de las pruebas de flujo lateral
- Prueba de antígeno del SARS-CoV-2 más rápida, jamás diseñada, permite realizar pruebas de COVID-19 no invasivas en cualquier entorno
- Pruebas rápidas de antígeno detectan las variantes ómicron, delta del SARS-CoV-2
- Prueba en sangre realizada durante la infección inicial predice el riesgo de COVID prolongada
- Investigadores afirman que hay que crear “reservistas” de laboratorio para responder más rápidamente a la próxima pandemia
- Estudio encuentra que los profesionales sanitarios mostraron mayor interés en tecnologías POC durante la pandemia
- Plataforma de análisis de bajo costo para la COVID-19 combina sensibilidad de la PCR y velocidad de pruebas de antígeno
- Prueba de sangre por punción digital identifica inmunidad a la COVID-19
- Kit de prueba rápida determina inmunidad contra la COVID-19 y sus variantes
Canales
Química Clínica
ver canalEspectrometría de masas detecta bacterias sin necesidad de aislarlas ni multiplicarlas
La rapidez y la precisión son esenciales para diagnosticar enfermedades. Tradicionalmente, diagnosticar infecciones bacterianas implicaba el laborioso proceso de aislar patógenos y realizar... Más
Primera prueba integral de sífilis diagnostica definitivamente infección activa en 10 minutos
En Estados Unidos, los casos de sífilis aumentaron casi un 80 % entre 2018 y 2023, con 209.253 casos registrados en el último año con datos. La sífilis, que puede transmitirse... MásDiagnóstico Molecular
ver canal
Nueva etiqueta molecular desarrolla pruebas de tuberculosis más sencillas y rápidas
La tuberculosis (TB), la enfermedad infecciosa más mortal a nivel mundial, infecta a aproximadamente 10 millones de personas cada año y causa más de un millón de muertes al año.... Más
Descubrimiento de biomarcador abre camino para que análisis de sangre detecten y traten osteoartritis
Se proyecta que el número de personas afectadas por osteoartritis superará los mil millones para 2050. El principal factor de riesgo para esta afección articular crónica, común... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Nueva prueba diagnostica meningitis bacteriana con rapidez y precisión
La meningitis bacteriana es una afección potencialmente mortal: uno de cada seis pacientes fallece y la mitad de los supervivientes experimentan síntomas persistentes. Por lo tanto, un d... Más
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... MásPatología
ver canal
Enfoque de biopsia líquida basado en IA revolucionará detección del cáncer cerebral
Detectar cánceres cerebrales sigue siendo extremadamente difícil, ya que muchos pacientes solo reciben un diagnóstico en etapas avanzadas, tras la aparición de síntomas... Más
Análisis de imágenes de patología digital con IA mejora subtipificación del sarcoma pediátrico
Los sarcomas pediátricos son tumores poco frecuentes y diversos que pueden desarrollarse en varios tipos de tejidos blandos, como músculos, tendones, grasa, vasos sanguíneos o lin... MásTecnología
ver canal
Algoritmo de firma de luz permite diagnósticos médicos más rápidos y precisos
Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más