Aprendizaje automático detecta el cáncer analizando el ADN en las muestras de sangre
Por el equipo editorial de LabMedica en español Actualizado el 19 Jun 2019 |

Imagen: Una prueba nueva de biopsia líquida llamada DELFI (evaluación de ADN de fragmentos para una interceptación temprana) utiliza inteligencia artificial para detectar pacientes con cáncer identificando fragmentaciones alteradas de ADN en la sangre (Fotografía cortesía de Carolyn Hruban, Universidad Johns Hopkins).
Los investigadores han descrito un enfoque de prueba de principio para el cribado, la detección temprana y el seguimiento del cáncer humano basado en un enfoque de aprendizaje automático que evalúa los patrones de fragmentación del ADN libre de células, en todo el genoma.
Si bien el ADN libre de células en la sangre proporciona una vía de diagnóstico no invasiva para los pacientes con cáncer, las características de los orígenes y las características moleculares del ADN libre de células son poco conocidas. Para corregir esta falta, los investigadores de la Universidad Johns Hopkins (Baltimore, MD, EUA) desarrollaron un enfoque basado en el aprendizaje automático para identificar patrones anormales de fragmentos de ADN en la sangre de los pacientes con cáncer.
Utilizaron este método DELFI (evaluación de ADN de fragmentos para la interceptación temprana) con el fin de analizar los perfiles de fragmentación de 236 pacientes con cáncer de mama, colorrectal, pulmón, ovario, páncreas, estómago o bilis y de 245 personas sanas.
El modelo de aprendizaje automático incorporó características de fragmentación del genoma con sensibilidades de detección que oscilaron entre el 57% y más del 99% entre los siete tipos de cáncer con una especificidad del 98%. Los perfiles de fragmentación se podrían usar para identificar el tejido de origen de los cánceres a un número limitado de sitios en el 75% de los casos. La combinación de este enfoque con el análisis de ADN libre de células basado en mutaciones detectó el 91% de los pacientes con cáncer.
“Por diversas razones, un genoma de cáncer está empaquetado de una manera muy desorganizada, lo que significa que cuando las células cancerosas mueren, liberan su ADN de forma caótica en el torrente sanguíneo”, dijo la primera autora, la Dra. Jillian Phallen, investigadora postdoctoral en la Universidad Johns Hopkins. “Al examinar este ADN libre de células (cfADN), DELFI ayuda a identificar la presencia de cáncer mediante la detección de anomalías en el tamaño y la cantidad de ADN en diferentes regiones del genoma en función de cómo está empaquetado”.
“Nos alienta el potencial de DELFI porque analiza un conjunto completamente independiente de características de ADN libre de células, de aquellas que han planteado dificultades a lo largo de los años, y esperamos trabajar con nuestros colaboradores de todo el mundo para que esta prueba esté disponible para los pacientes”, dijo el autor principal, el Dr. Victor E. Velculescu, profesor de oncología en la Universidad Johns Hopkins.
El método DELFI se describió en la edición en línea del 29 de mayo de 2019 de la revista Nature.
Enlace relacionado:
Johns Hopkins University
Si bien el ADN libre de células en la sangre proporciona una vía de diagnóstico no invasiva para los pacientes con cáncer, las características de los orígenes y las características moleculares del ADN libre de células son poco conocidas. Para corregir esta falta, los investigadores de la Universidad Johns Hopkins (Baltimore, MD, EUA) desarrollaron un enfoque basado en el aprendizaje automático para identificar patrones anormales de fragmentos de ADN en la sangre de los pacientes con cáncer.
Utilizaron este método DELFI (evaluación de ADN de fragmentos para la interceptación temprana) con el fin de analizar los perfiles de fragmentación de 236 pacientes con cáncer de mama, colorrectal, pulmón, ovario, páncreas, estómago o bilis y de 245 personas sanas.
El modelo de aprendizaje automático incorporó características de fragmentación del genoma con sensibilidades de detección que oscilaron entre el 57% y más del 99% entre los siete tipos de cáncer con una especificidad del 98%. Los perfiles de fragmentación se podrían usar para identificar el tejido de origen de los cánceres a un número limitado de sitios en el 75% de los casos. La combinación de este enfoque con el análisis de ADN libre de células basado en mutaciones detectó el 91% de los pacientes con cáncer.
“Por diversas razones, un genoma de cáncer está empaquetado de una manera muy desorganizada, lo que significa que cuando las células cancerosas mueren, liberan su ADN de forma caótica en el torrente sanguíneo”, dijo la primera autora, la Dra. Jillian Phallen, investigadora postdoctoral en la Universidad Johns Hopkins. “Al examinar este ADN libre de células (cfADN), DELFI ayuda a identificar la presencia de cáncer mediante la detección de anomalías en el tamaño y la cantidad de ADN en diferentes regiones del genoma en función de cómo está empaquetado”.
“Nos alienta el potencial de DELFI porque analiza un conjunto completamente independiente de características de ADN libre de células, de aquellas que han planteado dificultades a lo largo de los años, y esperamos trabajar con nuestros colaboradores de todo el mundo para que esta prueba esté disponible para los pacientes”, dijo el autor principal, el Dr. Victor E. Velculescu, profesor de oncología en la Universidad Johns Hopkins.
El método DELFI se describió en la edición en línea del 29 de mayo de 2019 de la revista Nature.
Enlace relacionado:
Johns Hopkins University
Últimas Patología noticias
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
Canales
Química Clínica
ver canal
Nuevo método utiliza luz infrarroja pulsada para encontrar huellas del cáncer en plasma sanguíneo
Tradicionalmente, el diagnóstico de cáncer se ha basado en procedimientos invasivos o laboriosos, como las biopsias de tejido. Ahora, una nueva investigación publicada en ACS Central... Más
Nanotubos de carbono ayudan a construir sensores precisos para monitoreo continuo de la salud
Los sensores actuales pueden medir diversos indicadores de salud, como los niveles de glucosa en sangre. Sin embargo, es necesario desarrollar materiales para sensores más precisos y sensibles que... MásDiagnóstico Molecular
ver canal
Análisis de sangre podría identificar a pacientes con riesgo de esclerodermia grave
La esclerosis sistémica, también conocida como esclerodermia, causa el endurecimiento de la piel y el tejido conectivo. En muchos casos, la enfermedad también puede dañar órganos... Más
Prueba de sangre basada en genes predice recurrencia del cáncer de piel avanzado
El melanoma, una forma agresiva de cáncer de piel, se vuelve extremadamente difícil de tratar una vez que se propaga a otras partes del cuerpo. En pacientes con tumores de melanoma metastásicos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... Más
Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
Los virus representan un importante riesgo para la salud mundial, como lo demuestran las recientes pandemias, lo que hace que la detección e identificación tempranas sean esenciales para... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más