IA identifica riesgos de cada sexo asociados con tumores cerebrales
Por el equipo editorial de LabMedica en español Actualizado el 11 Oct 2024 |
.jpg)
Durante años, los investigadores del cáncer han observado que los hombres tienen más probabilidades que las mujeres de desarrollar glioblastoma, una forma mortal y agresiva de cáncer cerebral con una supervivencia media de solo 15 meses después del diagnóstico. Además, estos tumores tienden a ser más agresivos en los hombres. Sin embargo, identificar características específicas que podrían ayudar a predecir qué tumores crecerán más rápido ha seguido siendo un desafío. Ahora, los investigadores están recurriendo a la inteligencia artificial (IA) para descubrir estos factores de riesgo y explorar cómo difieren entre hombres y mujeres.
Los científicos de la Universidad de Wisconsin-Madison (Madison, Wisconsin, EUA) están utilizando las capacidades computacionales de la IA para analizar grandes conjuntos de datos de imágenes médicas, con el objetivo de encontrar patrones que puedan ayudar a los oncólogos a tomar decisiones más informadas para sus pacientes. Su objetivo es abordar toda la gama de desafíos que enfrentan los pacientes con cáncer, desde el diagnóstico y el pronóstico hasta la evaluación de la respuesta al tratamiento. En este estudio, los investigadores se centraron en imágenes digitales de portaobjetos de patología (secciones delgadas de muestras de tumores) en un esfuerzo por detectar patrones que pudieran predecir la velocidad a la que podría crecer un tumor y, en consecuencia, cuánto tiempo podría sobrevivir un paciente. El pronóstico preciso es fundamental, ya que influye en las decisiones de tratamiento y afecta la calidad de vida de los pacientes después del diagnóstico.
Para abordar este problema, los investigadores desarrollaron un modelo de IA capaz de detectar patrones sutiles en las muestras de patología que podrían ser imperceptibles para el ojo humano. Entrenaron el modelo utilizando datos de más de 250 estudios de glioblastoma, enseñándole a reconocer características tumorales distintivas, como la abundancia de ciertos tipos de células y el grado de invasión del tumor en el tejido sano cercano. Además, el modelo fue entrenado para identificar correlaciones entre estas características y los tiempos de supervivencia de los pacientes, teniendo en cuenta también su sexo. A través de este enfoque, el equipo creó un modelo de IA que puede identificar factores de riesgo para tumores más agresivos, con patrones distintos asociados con cada sexo.
En el caso de las mujeres, las características de mayor riesgo identificadas por el modelo de IA incluían tumores que se infiltraban en el tejido sano. En los hombres, la presencia de células pseudoempalizadas (células que rodean el tejido moribundo) se relacionaba con tumores más agresivos. Los hallazgos iniciales de los investigadores, publicados en Science Advances, revelaron que el modelo también detectó rasgos tumorales asociados con peores pronósticos para ambos sexos. El equipo ahora está ampliando su trabajo a los datos de resonancia magnética y ha comenzado a utilizar la IA para analizar otros tipos de cáncer, como el de páncreas y el de mama, con el objetivo de mejorar los resultados de los pacientes. Este estudio podría allanar el camino para enfoques de tratamiento más personalizados para los pacientes con glioblastoma.
“Se recopilan toneladas de datos durante el tratamiento de un paciente con cáncer”, afirmó Pallavi Tiwari, profesora de radiología e ingeniería biomédica. “Por desgracia, en la actualidad, se suele estudiar de forma aislada, y aquí es donde la IA tiene un enorme potencial. Al descubrir estos patrones únicos, esperamos inspirar nuevas vías para el tratamiento personalizado y alentar la investigación continua sobre las diferencias biológicas subyacentes observadas en estos tumores”.
Últimas Patología noticias
- Kits de ensayo de enzima DUB sensibles y específicos requieren configuración mínima sin preparación del sustrato
- Primer modelo de IA para diagnóstico de cáncer de tiroides con precisión superior al 90 %
- Enfoque diagnóstico innovador mejora significativamente la detección de tuberculosis
- Método de detección rápido, ultrasensible y sin PCR hace el análisis genético más accesible
- Prueba de saliva más precisa para identificar riesgo de cáncer de próstata
- Nanotecnología del ADN aumenta sensibilidad de tiras reactivas
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Nueva herramienta genética analiza sangre del cordón umbilical para predecir enfermedades
Los niños experimentan problemas metabólicos a edades cada vez más tempranas, lo que los expone a un mayor riesgo de sufrir graves problemas de salud en el futuro. Existe una creciente... Más
Biomarcador del líquido cefalorraquídeo para enfermedad de Parkinson ofrece diagnóstico temprano y preciso
La enfermedad de Parkinson es una enfermedad neurodegenerativa que suele diagnosticarse en una etapa avanzada basándose en síntomas clínicos, principalmente trastornos motores.... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más