Método de tinción de tejidos basado en IA detecta depósitos de amiloide sin necesidad de tinciones químicas ni microscopía de polarización
Por el equipo editorial de LabMedica en español Actualizado el 25 Sep 2024 |

La amiloidosis sistémica, un trastorno caracterizado por la acumulación de proteínas mal plegadas en órganos y tejidos, presenta importantes dificultades de diagnóstico. La condición afecta a millones de personas cada año, a menudo resultando en daño orgánico severo, insuficiencia cardíaca y altas tasas de mortalidad si no se diagnostica y trata a tiempo. Tradicionalmente, la detección de depósitos de amiloide se ha basado en la tinción con rojo Congo observada con microscopio de luz polarizada, que se ha considerado el método de referencia. Sin embargo, este método requiere mucho tiempo, es costoso y tiende a presentar variabilidad, lo que puede dar lugar a diagnósticos erróneos. Ahora, los investigadores han desarrollado un método innovador para obtener imágenes y detectar depósitos de amiloide en muestras de tejido. Este enfoque innovador utiliza el aprendizaje profundo y la microscopía de autofluorescencia para crear imágenes de birrefringencia virtual y tinción histológica, eliminando la necesidad de imágenes de polarización y tinciones tradicionales como el rojo Congo.
La nueva técnica, descrita en la revista Nature Communications y desarrollada por investigadores de la Universidad de California en Los Ángeles (UCLA, Los Ángeles, CA, EUA), emplea una única red neuronal para convertir imágenes de autofluorescencia de tejido no teñido en imágenes de microscopía polarizada y de campo claro de alta resolución. Estas imágenes se parecen a las producidas por tinción histoquímica convencional y microscopía de polarización. El método fue probado en muestras de tejido cardíaco y demostró que las imágenes virtualmente teñidas identificaron de manera consistente y precisa los patrones de amiloide. Este enfoque elimina la necesidad de tinción química y microscopios de polarización especializados, lo que potencialmente acelera el diagnóstico y reduce los costos. El proceso de tinción virtual igualó e incluso superó la calidad de los métodos tradicionales, como lo confirmaron varios patólogos certificados por la junta de UCLA.
Los resultados del estudio indican que esta técnica de tinción virtual podría incorporarse fácilmente a los flujos de trabajo clínicos actuales, fomentando un uso más amplio de la patología digital. El método no requiere componentes ópticos especializados y puede implementarse en escáneres de patología digital estándar, aciéndolo accesible para una amplia gama de instalaciones de salud. Los investigadores planean ampliar sus evaluaciones a otros tipos de tejidos, incluidos el riñón, el hígado y el bazo, para validar aún más la eficacia de la técnica en varias formas de amiloidosis. También tienen como objetivo desarrollar sistemas de detección automatizados para ayudar a los patólogos a identificar regiones problemáticas, lo que podría mejorar la precisión del diagnóstico y minimizar los falsos negativos.
“Nuestro modelo de aprendizaje profundo puede realizar transformaciones de imagen tanto de autofluorescencia a birrefringencia como de autofluorescencia a campo claro, lo que ofrece una alternativa confiable, consistente y rentable a los métodos de histología tradicionales. Este avance podría mejorar en gran medida la velocidad y precisión del diagnóstico de amiloidosis, reduciendo el riesgo de falsos negativos y mejorando los resultados de los pacientes”, afirmó el Dr. Aydogan Ozcan, autor principal del estudio y titular de la Cátedra Volgenau de Innovación en Ingeniería en la UCLA. “Esta innovación representa un avance significativo en el campo de la patología de la amiloidosis. No solo simplifica el proceso de diagnóstico, sino que también tiene potencial para expandir el uso de la patología digital en la práctica clínica habitual, en particular en entornos con recursos limitados”.
Últimas Patología noticias
- Kits de ensayo de enzima DUB sensibles y específicos requieren configuración mínima sin preparación del sustrato
- Primer modelo de IA para diagnóstico de cáncer de tiroides con precisión superior al 90 %
- Enfoque diagnóstico innovador mejora significativamente la detección de tuberculosis
- Método de detección rápido, ultrasensible y sin PCR hace el análisis genético más accesible
- Prueba de saliva más precisa para identificar riesgo de cáncer de próstata
- Nanotecnología del ADN aumenta sensibilidad de tiras reactivas
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Nueva herramienta genética analiza sangre del cordón umbilical para predecir enfermedades
Los niños experimentan problemas metabólicos a edades cada vez más tempranas, lo que los expone a un mayor riesgo de sufrir graves problemas de salud en el futuro. Existe una creciente... Más
Biomarcador del líquido cefalorraquídeo para enfermedad de Parkinson ofrece diagnóstico temprano y preciso
La enfermedad de Parkinson es una enfermedad neurodegenerativa que suele diagnosticarse en una etapa avanzada basándose en síntomas clínicos, principalmente trastornos motores.... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más