Modelo de IA identifica pacientes con una forma de cáncer de endometrio de alto riesgo
Por el equipo editorial de LabMedica en español Actualizado el 09 Jul 2024 |

El cáncer de endometrio es el cáncer ginecológico más común y varía ampliamente en agresividad, con algunas formas más propensas a reaparecer que otras. Esta variabilidad subraya la necesidad de identificar pacientes con cáncer de endometrio de alto riesgo para adaptar las intervenciones y prevenir la recurrencia. Actualmente, los investigadores están aprovechando la inteligencia artificial (IA) para desarrollar herramientas de diagnóstico de precisión para el cáncer de endometrio, mejorando así la atención al paciente.
Investigadores de la Universidad de Columbia Británica (Vancouver, BC, Canadá) utilizaron inteligencia artificial para analizar miles de imágenes de células cancerosas e identificar un subconjunto específico de cáncer de endometrio asociado con un mayor riesgo de recurrencia y muerte, que podría no ser detectable mediante patología estándar y diagnósticos moleculares. Esta innovación está destinada a ayudar a los médicos a identificar pacientes que requieren estrategias de tratamiento más agresivas. Sobre la base de su investigación fundamental de 2013, que clasificó el cáncer de endometrio en cuatro subtipos moleculares, cada uno con distintos niveles de riesgo, el equipo desarrolló una herramienta de diagnóstico molecular llamada ProMiSE que diferencia eficazmente estos subtipos. Sin embargo, el subtipo molecular más común, que representa aproximadamente la mitad de todos los casos, sirve como una categoría amplia para los cánceres que carecen de características moleculares específicas.
Para segmentar aún más la categoría utilizando métodos avanzados de IA, el equipo creó un modelo de IA de aprendizaje profundo que examina imágenes de muestras de tejido del paciente. Este modelo fue entrenado para distinguir entre subtipos y, después de evaluar más de 2.300 imágenes de tejido canceroso, identificó un nuevo subgrupo con tasas de supervivencia significativamente más bajas. Los investigadores están considerando cómo podría incorporarse esta herramienta de IA en la práctica clínica regular junto con los diagnósticos tradicionales. Una ventaja de este enfoque de IA es su rentabilidad y la facilidad con la que puede implementarse ampliamente. La IA revisa imágenes que típicamente son recopiladas y examinadas por patólogos, lo que la hace accesible para su uso en instalaciones médicas más pequeñas en áreas rurales y remotas, a menudo involucradas cuando se buscan segundas opiniones. Al integrar análisis moleculares y basados en inteligencia artificial, muchos pacientes podrían continuar recibiendo atención en sus comunidades locales, reservando tratamientos más complejos para aquellos que necesitan los recursos de centros oncológicos más grandes.
"El poder de la IA es que puede observar objetivamente grandes conjuntos de imágenes e identificar patrones que eluden a los patólogos humanos", dijo el Dr. Ali Bashashati, experto en aprendizaje automático y profesor asistente de ingeniería biomédica, patología y medicina de laboratorio en la UBC. “Es encontrar la aguja en el pajar. Nos dice que este grupo de cánceres con estas características son los peores y representan un mayor riesgo para los pacientes”. Los resultados del estudio del equipo se publicaron en Nature Communications el 26 de junio de 2024.
Enlaces relacionados:
Universidad de Columbia Britanica
Gynecologic Cancer Initiative
Últimas Patología noticias
- Kits de ensayo de enzima DUB sensibles y específicos requieren configuración mínima sin preparación del sustrato
- Primer modelo de IA para diagnóstico de cáncer de tiroides con precisión superior al 90 %
- Enfoque diagnóstico innovador mejora significativamente la detección de tuberculosis
- Método de detección rápido, ultrasensible y sin PCR hace el análisis genético más accesible
- Prueba de saliva más precisa para identificar riesgo de cáncer de próstata
- Nanotecnología del ADN aumenta sensibilidad de tiras reactivas
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Nueva herramienta genética analiza sangre del cordón umbilical para predecir enfermedades
Los niños experimentan problemas metabólicos a edades cada vez más tempranas, lo que los expone a un mayor riesgo de sufrir graves problemas de salud en el futuro. Existe una creciente... Más
Biomarcador del líquido cefalorraquídeo para enfermedad de Parkinson ofrece diagnóstico temprano y preciso
La enfermedad de Parkinson es una enfermedad neurodegenerativa que suele diagnosticarse en una etapa avanzada basándose en síntomas clínicos, principalmente trastornos motores.... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más