Algoritmos de inteligencia artificial potenciados por aprendizaje profundo mejoran la precisión en el diagnóstico de cáncer de piel
Por el equipo editorial de LabMedica en español Actualizado el 10 May 2024 |

Algoritmos de inteligencia artificial (IA) se utilizan cada vez más en diversos entornos clínicos, como la dermatología. Estos algoritmos se desarrollan entrenando una computadora con cientos de miles o millones de imágenes de diversas afecciones de la piel, cada una etiquetada con detalles como el diagnóstico y los resultados del paciente. A través de un proceso conocido como aprendizaje profundo, la computadora aprende a identificar patrones en las imágenes que son indicativos de enfermedades específicas de la piel, incluidos los cánceres. Una vez suficientemente entrenado, el algoritmo puede sugerir diagnósticos potenciales basados en nuevas imágenes de la piel de un paciente. Sin embargo, estos algoritmos no funcionan de forma aislada; se utilizan bajo la supervisión de médicos que evalúan al paciente, realizan sus propias valoraciones diagnósticas y deciden si seguir las recomendaciones del algoritmo.
Ahora, un nuevo estudio dirigido por investigadores de Stanford Medicine (Stanford, CA, EUA) ha descubierto que los algoritmos de inteligencia artificial, que utilizan el aprendizaje profundo, pueden mejorar la precisión del diagnóstico de cánceres de piel. Este beneficio se extiende a los dermatólogos, aunque la mejora es más pronunciada para los no dermatólogos. El estudio analizó 12 estudios de investigación que documentaron más de 67.000 evaluaciones de posibles cánceres de piel realizadas por varios profesionales médicos, con y sin asistencia de IA. Los hallazgos indicaron que los profesionales de la salud sin el apoyo de la IA diagnosticaron con precisión aproximadamente el 75 % de los casos reales de cáncer de piel e identificaron correctamente alrededor del 81,5 % de las afecciones no cancerosas que se parecían al cáncer. El desempeño de los profesionales de la salud mejoró cuando utilizaron la IA para ayudar con los diagnósticos. Su sensibilidad aumentó hasta aproximadamente el 81,1% y su especificidad hasta el 86,1 %.
Aunque estas mejoras pueden parecer modestas, son cruciales para diagnosticar correctamente a los pacientes a quienes se les dice erróneamente que no tienen cáncer cuando sí lo tienen, o a quienes se les informa incorrectamente que tienen cáncer cuando no lo tienen. El análisis reveló además que los estudiantes de medicina, las enfermeras practicantes y los médicos de atención primaria fueron los que más obtuvieron la asistencia de la IA, con mejoras promedio de aproximadamente 13 puntos en sensibilidad y 11 puntos en especificidad. Si bien los dermatólogos y residentes de dermatología ya mostraron una mayor precisión general, su desempeño diagnóstico también obtuvo ganancias en sensibilidad y especificidad con la asistencia de la IA. Los investigadores ahora buscan explorar más a fondo el potencial y los desafíos de integrar herramientas de IA en la atención médica, centrándose particularmente en cómo las percepciones y actitudes de los médicos y pacientes hacia la IA podrían afectar su adopción.
"Los estudios anteriores se han centrado en cómo funciona la IA en comparación con los médicos", dijo la investigadora postdoctoral Jiyeong Kim, PhD. "Nuestro estudio comparó a los médicos que trabajan sin asistencia de IA con los médicos que utilizan IA para diagnosticar cánceres de piel".
Enlaces relacionados:
Medicina de Stanford
Últimas Patología noticias
- Kits de ensayo de enzima DUB sensibles y específicos requieren configuración mínima sin preparación del sustrato
- Primer modelo de IA para diagnóstico de cáncer de tiroides con precisión superior al 90 %
- Enfoque diagnóstico innovador mejora significativamente la detección de tuberculosis
- Método de detección rápido, ultrasensible y sin PCR hace el análisis genético más accesible
- Prueba de saliva más precisa para identificar riesgo de cáncer de próstata
- Nanotecnología del ADN aumenta sensibilidad de tiras reactivas
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Nueva herramienta genética analiza sangre del cordón umbilical para predecir enfermedades
Los niños experimentan problemas metabólicos a edades cada vez más tempranas, lo que los expone a un mayor riesgo de sufrir graves problemas de salud en el futuro. Existe una creciente... Más
Biomarcador del líquido cefalorraquídeo para enfermedad de Parkinson ofrece diagnóstico temprano y preciso
La enfermedad de Parkinson es una enfermedad neurodegenerativa que suele diagnosticarse en una etapa avanzada basándose en síntomas clínicos, principalmente trastornos motores.... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más