Biosensor electroquímico basado en CRISPR detecta microARN relacionados con la enfermedad
Por el equipo editorial de LabMedica en español Actualizado el 11 Dec 2019 |

Imagen: Los investigadores presentaron el primer biosensor electroquímico basado en CRISPR para ayudar a mejorar el diagnóstico de las enfermedades (Fotografía cortesía de Richard Bruch, Universidad de Friburgo)
Se ha introducido un chip microfluídico que contiene un biosensor electroquímico basado en CRISPR/Cas como un dispositivo para el análisis rápido y preciso de los microARN involucrados en varios estados de enfermedad.
Los microARN (miARN) y los ARN interferentes cortos (siARN) comprenden una clase de fragmentos de ARN de aproximadamente 20 nucleótidos de longitud, que bloquean la expresión génica al unirse a las moléculas del ARN mensajero de una manera tal que les impide transmitir las instrucciones de síntesis de proteínas que habían recibido del ADN. Con su capacidad para ajustar la expresión de proteínas mediante interacciones específicas de secuencia, los miARN ayudan a regular el mantenimiento y la diferenciación celular. Además de que los miARN desempeñan un papel esencial en el desarrollo de tumores, se ha asociado la mala regulación de ciertos miARN con muchas enfermedades diferentes, como la demencia y las enfermedades cardiovasculares.
Los CRISPR (repeticiones palindrómicas cortas agrupadas regularmente y separadas entre sí) son segmentos de ADN procariótico que contienen repeticiones cortas de secuencias de bases. Cada repetición es seguida por segmentos cortos de “ADN espaciador” de exposiciones previas a un virus o plásmido bacteriano. Desde 2013, se ha utilizado el sistema CRISPR/Cas9 en la investigación para la edición de genes (agregar, interrumpir o cambiar la secuencia de genes específicos) y la regulación de genes. Al administrar la enzima Cas9 y los ARN guía apropiados (sgARN) en una célula, el genoma del organismo se puede cortar en cualquier lugar deseado. El sistema convencional CRISPR/Cas9 de Streptococcus pyogenes se compone de dos partes: la enzima Cas9, que escinde la molécula de ADN y las guías de ARN específicas que guían la proteína Cas9 al gen objetivo en una cadena de ADN.
Los esfuerzos computacionales recientes para identificar nuevos sistemas CRISPR descubrieron un nuevo tipo de enzima dirigida al ARN, Cas13. La diversa familia Cas13 contiene al menos cuatro subtipos conocidos, incluidos Cas13a (anteriormente C2c2), Cas13b, Cas13c y Cas13d. Se demostró que Cas13a se une y escinde ARN, protegiendo a las bacterias de los fagos de ARN y sirviendo como una plataforma poderosa para la manipulación de ARN. Se sugirió que Cas13a podría funcionar como parte de un sistema CRISPR/Cas versátil, dirigido a ARN guiado por ARN y que tiene un gran potencial para aplicaciones precisas, robustas y escalables de orientación a ARN guiado por ARN.
Los investigadores de la Universidad de Friburgo (Alemania) explotaron las características de Cas13a al usarlo para alimentar un biosensor electroquímico integrado microfluídico para la detección in situ de microARN. Se colocó una muestra de suero que contenía ARN en el sensor. Si contenía el ARN objetivo, esta molécula se combinaba con un complejo proteico en la solución y activaba la enzima de escisión Cas. Después de la activación, la enzima escindió los ARN informadores que estaban unidos a las moléculas de señalización, generando una corriente eléctrica, que se midió electroquímicamente. Este cambio indicó si el miARN objetivo estaba presente en la muestra o no. Si el microARN objetivo no estaba presente, no se generó corriente.
Los investigadores mostraron que al emplear esta combinación única de agentes, se logró la cuantificación de los posibles marcadores tumorales de microARN miR ‐ 19b y miR ‐ 20a sin necesidad de amplificación de ácido nucleico. El sistema requirió menos de 0,6 microlitros de muestra, tuvo un tiempo de lectura de nueve minutos y un tiempo de proceso general de menos de cuatro horas. Además, se demostró la viabilidad de la plataforma de biosensores para detectar miR ‐ 19b en muestras de suero de niños que padecen cáncer cerebral.
“Nuestro biosensor electroquímico es cinco a 10 veces más sensible que otras aplicaciones que usan CRISPR/Cas para el análisis de ARN”, dijo el autor colaborador, Dr. Can Dincer, líder del grupo de investigación en el departamento de ingeniería de microsistemas de la Universidad de Friburgo. “Lo especial de nuestro sistema es que funciona sin necesidad de replicación de miARN, porque en ese caso, se requerirían dispositivos y productos químicos especializados. Eso hace que nuestro sistema sea de bajo costo y considerablemente más rápido que otras técnicas o métodos”.
El biosensor basado en CRISPR se describió en la edición en línea del 30 de octubre de 2019 de la revista Advanced Materials.
Enlace relacionado:
Universidad de Friburgo
Los microARN (miARN) y los ARN interferentes cortos (siARN) comprenden una clase de fragmentos de ARN de aproximadamente 20 nucleótidos de longitud, que bloquean la expresión génica al unirse a las moléculas del ARN mensajero de una manera tal que les impide transmitir las instrucciones de síntesis de proteínas que habían recibido del ADN. Con su capacidad para ajustar la expresión de proteínas mediante interacciones específicas de secuencia, los miARN ayudan a regular el mantenimiento y la diferenciación celular. Además de que los miARN desempeñan un papel esencial en el desarrollo de tumores, se ha asociado la mala regulación de ciertos miARN con muchas enfermedades diferentes, como la demencia y las enfermedades cardiovasculares.
Los CRISPR (repeticiones palindrómicas cortas agrupadas regularmente y separadas entre sí) son segmentos de ADN procariótico que contienen repeticiones cortas de secuencias de bases. Cada repetición es seguida por segmentos cortos de “ADN espaciador” de exposiciones previas a un virus o plásmido bacteriano. Desde 2013, se ha utilizado el sistema CRISPR/Cas9 en la investigación para la edición de genes (agregar, interrumpir o cambiar la secuencia de genes específicos) y la regulación de genes. Al administrar la enzima Cas9 y los ARN guía apropiados (sgARN) en una célula, el genoma del organismo se puede cortar en cualquier lugar deseado. El sistema convencional CRISPR/Cas9 de Streptococcus pyogenes se compone de dos partes: la enzima Cas9, que escinde la molécula de ADN y las guías de ARN específicas que guían la proteína Cas9 al gen objetivo en una cadena de ADN.
Los esfuerzos computacionales recientes para identificar nuevos sistemas CRISPR descubrieron un nuevo tipo de enzima dirigida al ARN, Cas13. La diversa familia Cas13 contiene al menos cuatro subtipos conocidos, incluidos Cas13a (anteriormente C2c2), Cas13b, Cas13c y Cas13d. Se demostró que Cas13a se une y escinde ARN, protegiendo a las bacterias de los fagos de ARN y sirviendo como una plataforma poderosa para la manipulación de ARN. Se sugirió que Cas13a podría funcionar como parte de un sistema CRISPR/Cas versátil, dirigido a ARN guiado por ARN y que tiene un gran potencial para aplicaciones precisas, robustas y escalables de orientación a ARN guiado por ARN.
Los investigadores de la Universidad de Friburgo (Alemania) explotaron las características de Cas13a al usarlo para alimentar un biosensor electroquímico integrado microfluídico para la detección in situ de microARN. Se colocó una muestra de suero que contenía ARN en el sensor. Si contenía el ARN objetivo, esta molécula se combinaba con un complejo proteico en la solución y activaba la enzima de escisión Cas. Después de la activación, la enzima escindió los ARN informadores que estaban unidos a las moléculas de señalización, generando una corriente eléctrica, que se midió electroquímicamente. Este cambio indicó si el miARN objetivo estaba presente en la muestra o no. Si el microARN objetivo no estaba presente, no se generó corriente.
Los investigadores mostraron que al emplear esta combinación única de agentes, se logró la cuantificación de los posibles marcadores tumorales de microARN miR ‐ 19b y miR ‐ 20a sin necesidad de amplificación de ácido nucleico. El sistema requirió menos de 0,6 microlitros de muestra, tuvo un tiempo de lectura de nueve minutos y un tiempo de proceso general de menos de cuatro horas. Además, se demostró la viabilidad de la plataforma de biosensores para detectar miR ‐ 19b en muestras de suero de niños que padecen cáncer cerebral.
“Nuestro biosensor electroquímico es cinco a 10 veces más sensible que otras aplicaciones que usan CRISPR/Cas para el análisis de ARN”, dijo el autor colaborador, Dr. Can Dincer, líder del grupo de investigación en el departamento de ingeniería de microsistemas de la Universidad de Friburgo. “Lo especial de nuestro sistema es que funciona sin necesidad de replicación de miARN, porque en ese caso, se requerirían dispositivos y productos químicos especializados. Eso hace que nuestro sistema sea de bajo costo y considerablemente más rápido que otras técnicas o métodos”.
El biosensor basado en CRISPR se describió en la edición en línea del 30 de octubre de 2019 de la revista Advanced Materials.
Enlace relacionado:
Universidad de Friburgo
Últimas Tecnología noticias
- Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
- Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
- Teléfonos inteligentes podrían diagnosticar enfermedades mediante escáneres infrarrojos
- Nueva tecnología de sensores permite diagnóstico temprano de trastornos metabólicos y cardiovasculares
- Avance en impresión 3D permite desarrollo a gran escala de diminutos dispositivos microfluídicos
- Plataforma de sensores en papel transforma diagnóstico cardíaco
- Estudio explora impacto de pruebas POC en el futuro de los diagnósticos
- Sensor económico de respuesta rápida permite detección temprana y precisa del cáncer de pulmón
- Nanotecnología para diagnósticar cáncer de cuello uterino podría sustituir pruebas de Papanicolaou
- Plataforma de laboratorio en chip agilizar diagnóstico del cáncer
- Plataforma de biosensores detecta simultáneamente vitamina C y SARS-CoV-2
- Nuevo método analiza lágrimas para detectar enfermedades de forma temprana
- Sensores basados en FET abren camino a dispositivos de diagnóstico portátiles para detectar múltiples enfermedades
- Biosensor basado en papel para detectar glucosa mediante sudor revoluciona tratamiento de diabetes
- Análisis de sangre con IA identifica pacientes en etapa más temprana del cáncer de mama
- Biosensor óptico detecta virus de la viruela del mono en POC
Canales
Química Clínica
ver canal
Nuevo método utiliza luz infrarroja pulsada para encontrar huellas del cáncer en plasma sanguíneo
Tradicionalmente, el diagnóstico de cáncer se ha basado en procedimientos invasivos o laboriosos, como las biopsias de tejido. Ahora, una nueva investigación publicada en ACS Central... Más
Nanotubos de carbono ayudan a construir sensores precisos para monitoreo continuo de la salud
Los sensores actuales pueden medir diversos indicadores de salud, como los niveles de glucosa en sangre. Sin embargo, es necesario desarrollar materiales para sensores más precisos y sensibles que... MásDiagnóstico Molecular
ver canal
Análisis de sangre podría identificar a pacientes con riesgo de esclerodermia grave
La esclerosis sistémica, también conocida como esclerodermia, causa el endurecimiento de la piel y el tejido conectivo. En muchos casos, la enfermedad también puede dañar órganos... Más
Prueba de sangre basada en genes predice recurrencia del cáncer de piel avanzado
El melanoma, una forma agresiva de cáncer de piel, se vuelve extremadamente difícil de tratar una vez que se propaga a otras partes del cuerpo. En pacientes con tumores de melanoma metastásicos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásPatología
ver canal
Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
La tecnología de biopsia líquida, que se basa en análisis de sangre para la detección temprana del cáncer y el seguimiento de la carga oncológica en los pacientes,... Más
Algoritmo "detector de metales" consigue tumores vulnerables
Científicos han desarrollado un algoritmo capaz de funcionar como un "detector de metales" para identificar tumores vulnerables, lo que supone un avance significativo en el tratamiento... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más