Dispositivo portátil para detección de malaria en etapa inicial
Por el equipo editorial de LabMedica en español Actualizado el 02 Jul 2018 |

Imagen: El prototipo del sistema de diagnóstico óptico portátil (PODS) para diagnosticar la malaria (Fotografía cortesía de la Universidad del Sur de California).
En 2016 se infectaron más de 216 millones de personas con malaria, y 445,000 personas murieron a causa de la enfermedad. La clave para resolver esta crisis de salud es el diagnóstico en etapa temprana cuando las terapias contra la malaria son más efectivas.
Hay dos formas estándar de diagnosticar la malaria, pero ambas tienen limitaciones. La primera consiste en tomar una muestra de sangre de una persona y observarla con un microscopio buscando los glóbulos rojos que se han infectado con el parásito de la malaria. Otro método son las pruebas de diagnóstico rápido.
Los bioingenieros de la Universidad del Sur de California (Los Ángeles, CA, EUA) han desarrollado una tecnología portátil, magnetoóptica para el diagnóstico temprano de malaria basada en la detección del pigmento de la malaria, la hemozoína. El prototipo del sistema de diagnóstico óptico portátil (PODS) detecta un subproducto generado por todas las especies del parásito de la malaria, como tal; es un examen rápido para todas las cepas de malaria. Debido a que la cantidad de hemozoína en la sangre está directamente relacionada con el progreso de la infección de la malaria, es un indicador ideal de infección.
Al aplicar un imán, es posible manipular y mover las partículas de hemozoína dentro de un tubo de ensayo, o moverlas dentro y fuera del rayo láser. De esta forma, una sola muestra se puede usar para realizar dos mediciones, y cada diagnóstico es personalizado. Si hay hemozoína presente, incluso en concentraciones mínimas, las señales cambian. En promedio, la señal tarda entre 10 y 15 minutos en estabilizarse, y una diferencia mayor entre las dos mediciones indica que la malaria ha progresado aún más. Los científicos utilizaron β-hematina, un imitador de hemozoína, y demostraron límites de detección de menos de 0,0081 μg/ml en 500 μL de sangre total de conejo sin necesidad de reactivos adicionales. Este nivel corresponde a menos de 26 parásitos/μL, un orden completo de magnitud por debajo de la relevancia clínica y comparable o menor que el de las tecnologías existentes.
Andrea Martin Armani, PhD, profesora de ingeniería química y ciencia de materiales, y autora principal del estudio, dijo: “La malaria afecta principalmente a entornos de bajos recursos donde la gestión de la cadena de suministro es difícil y el acceso al poder puede ser poco confiable. Por lo tanto, un diagnóstico efectivo de malaria debe ser independiente de estos”. El estudio fue publicado el 21 de mayo de 2018 en la revista ACS Sensors.
Enlace relacionado:
Universidad del Sur de California
Hay dos formas estándar de diagnosticar la malaria, pero ambas tienen limitaciones. La primera consiste en tomar una muestra de sangre de una persona y observarla con un microscopio buscando los glóbulos rojos que se han infectado con el parásito de la malaria. Otro método son las pruebas de diagnóstico rápido.
Los bioingenieros de la Universidad del Sur de California (Los Ángeles, CA, EUA) han desarrollado una tecnología portátil, magnetoóptica para el diagnóstico temprano de malaria basada en la detección del pigmento de la malaria, la hemozoína. El prototipo del sistema de diagnóstico óptico portátil (PODS) detecta un subproducto generado por todas las especies del parásito de la malaria, como tal; es un examen rápido para todas las cepas de malaria. Debido a que la cantidad de hemozoína en la sangre está directamente relacionada con el progreso de la infección de la malaria, es un indicador ideal de infección.
Al aplicar un imán, es posible manipular y mover las partículas de hemozoína dentro de un tubo de ensayo, o moverlas dentro y fuera del rayo láser. De esta forma, una sola muestra se puede usar para realizar dos mediciones, y cada diagnóstico es personalizado. Si hay hemozoína presente, incluso en concentraciones mínimas, las señales cambian. En promedio, la señal tarda entre 10 y 15 minutos en estabilizarse, y una diferencia mayor entre las dos mediciones indica que la malaria ha progresado aún más. Los científicos utilizaron β-hematina, un imitador de hemozoína, y demostraron límites de detección de menos de 0,0081 μg/ml en 500 μL de sangre total de conejo sin necesidad de reactivos adicionales. Este nivel corresponde a menos de 26 parásitos/μL, un orden completo de magnitud por debajo de la relevancia clínica y comparable o menor que el de las tecnologías existentes.
Andrea Martin Armani, PhD, profesora de ingeniería química y ciencia de materiales, y autora principal del estudio, dijo: “La malaria afecta principalmente a entornos de bajos recursos donde la gestión de la cadena de suministro es difícil y el acceso al poder puede ser poco confiable. Por lo tanto, un diagnóstico efectivo de malaria debe ser independiente de estos”. El estudio fue publicado el 21 de mayo de 2018 en la revista ACS Sensors.
Enlace relacionado:
Universidad del Sur de California
Últimas Microbiología noticias
- Prueba molecular de heces muestra potencial para diagnosticar tuberculosis en adultos con VIH
- Nueva prueba diagnostica meningitis bacteriana con rapidez y precisión
- Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
- Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
- Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas
- Sistema de identificación y PSA ayuda a diagnosticar enfermedades infecciosas y combatir RAM
- Panel gastrointestinal permite detección rápida de cinco patógenos bacterianos comunes
- Pruebas rápidas PCR en UCI mejoran uso de antibióticos
- Firma genética única predice resistencia a fármacos en bacterias
- Sistema de código de barras rastrea bacterias de neumonía mientras infectan el torrente sanguíneo
- Prueba rápida de diagnóstico de sepsis demuestra mejor atención al paciente y ahorro en aplicaciones hospitalarias
- Sistema de diagnóstico rápido detecta sepsis neonatal en horas
- Nueva prueba diagnostica neumonía bacteriana directamente a partir de sangre completa
- Ensayo de liberación de interferón-γ es eficaz en pacientes con EPOC y tuberculosis pulmonar
- Nuevas pruebas en punto de atención ayudan a reducir uso excesivo de antibióticos
- Prueba de sepsis rápida permite diferenciar infecciones bacterianas, virales y enfermedades no infecciosas
Canales
Química Clínica
ver canal
Análisis de sangre con IA detecta cáncer de ovario
El cáncer de ovario se ubica como la quinta causa principal de muerte por cáncer en mujeres, debido principalmente a diagnósticos en etapas tardías. Si bien más del 90... Más
Ensayo automatizado y descentralizado de NGS deADNlc identifica alteraciones en tumores sólidos avanzados
Los análisis actuales de ADN libre circulante (ADNlc) suelen estar centralizados, lo que requiere un manejo y transporte especializados de las muestras. La introducción de un sistema de ... MásDiagnóstico Molecular
ver canal
Innovadora prueba de diagnóstico molecular señala con precisión principal causa genética de EPOC
La enfermedad pulmonar obstructiva crónica (EPOC) y la deficiencia de alfa-1 antitripsina (DAAT) son afecciones que pueden causar dificultades respiratorias, pero difieren en su origen y herencia.... Más
Prueba diagnóstica de sangre detecta espondiloartritis axial
La espondiloartritis axial (EspAax) es una enfermedad autoinmune inflamatoria crónica que suele afectar a las personas durante sus años más productivos, y cuyos síntomas suelen manifestarse antes de los 45 años.... MásHematología
ver canal
Primera prueba de monitorización de heparina POC proporciona resultados rápidos
La dosificación de heparina requiere un manejo cuidadoso para evitar complicaciones hemorrágicas y de coagulación. En situaciones de alto riesgo, como la oxigenación por membrana... Más
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Prueba molecular de heces muestra potencial para diagnosticar tuberculosis en adultos con VIH
La tuberculosis (TB), causada por la bacteria Mycobacterium tuberculosis, provocó 1,25 millones de muertes en 2023, de las cuales el 13 % se produjeron en personas con VIH. El principal método... Más
Nueva prueba diagnostica meningitis bacteriana con rapidez y precisión
La meningitis bacteriana es una afección potencialmente mortal: uno de cada seis pacientes fallece y la mitad de los supervivientes experimentan síntomas persistentes. Por lo tanto, un d... MásPatología
ver canal
Innovador algoritmo de triaje del dolor torácico transforma la atención cardíaca
Las enfermedades cardiovasculares son responsables de un tercio de las muertes en todo el mundo, y el dolor torácico es la segunda causa más común de visitas a urgencias.... Más
Enfoque de biopsia líquida basado en IA revolucionará detección del cáncer cerebral
Detectar cánceres cerebrales sigue siendo extremadamente difícil, ya que muchos pacientes solo reciben un diagnóstico en etapas avanzadas, tras la aparición de síntomas... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más