Herramienta de IA ajusta con precisión los medicamentos contra el cáncer con los pacientes utilizando información de cada célula tumoral
Por el equipo editorial de LabMedica en español Actualizado el 12 May 2024 |

Las estrategias actuales para emparejar a los pacientes con cáncer con tratamientos específicos a menudo dependen de la secuenciación masiva de ADN y ARN tumoral, que proporciona un perfil promedio de todas las células dentro de una muestra de tumor. Sin embargo, los tumores son heterogéneos y contienen múltiples subpoblaciones de células o clones, cada una de las cuales responde potencialmente de manera diferente a los tratamientos. Esta variabilidad puede explicar por qué algunos pacientes no responden a ciertos tratamientos o desarrollan resistencia. La secuenciación de ARN unicelular ofrece datos de mayor resolución que la secuenciación masiva, capturando datos a nivel de célula individual. Este enfoque para identificar y apuntar a clones individuales puede conducir a respuestas farmacológicas más duraderas, aunque los datos de expresión genética unicelular son más costosos de generar y menos accesibles en entornos clínicos.
En un estudio de prueba de concepto, investigadores de los Institutos Nacionales de Salud (NIH, Bethesda, MD, EUA) han desarrollado una herramienta de inteligencia artificial (IA) que aprovecha datos de células tumorales individuales para predecir qué tan bien podría responder el cáncer de una persona a un medicamento específico. Este estudio demuestra el potencial de la secuenciación de ARN unicelular para ayudar a los oncólogos a combinar terapias eficaces con sus pacientes. En el nuevo estudio, el equipo empleó una técnica de aprendizaje automático conocida como aprendizaje por transferencia para entrenar un modelo de IA utilizando datos comunes de secuenciación masiva de ARN, después de lo cual utilizaron datos de secuenciación de ARN unicelular para afinar el modelo. Este método se aplicó a datos de líneas celulares existentes de ensayos integrales de respuesta a fármacos, lo que dio como resultado modelos de IA para 44 medicamentos contra el cáncer aprobados por la FDA que podrían predecir reacciones celulares tanto a medicamentos individuales como a combinaciones de medicamentos.
Las pruebas adicionales involucraron datos de 41 pacientes con mieloma múltiple tratados con cuatro medicamentos y 33 pacientes con cáncer de mama tratados con dos medicamentos. Los hallazgos revelaron que la resistencia en cualquier clon de una sola célula podría hacer que el tratamiento fuera ineficaz, incluso si otros clones eran sensibles. El modelo también predijo con éxito el desarrollo de resistencia en datos de 24 pacientes con cáncer de pulmón de células no pequeñas sometidos a terapias dirigidas. Los investigadores observaron que la precisión de este enfoque puede mejorar a medida que la secuenciación de ARN unicelular se vuelva más ampliamente disponible. Para facilitar un uso más amplio, los investigadores han creado un sitio web de investigación y una guía, denominada Planificación Personalizada Basada en la Expresión de Células Individuales para Tratamientos en Oncología (PERCEPTION), para aplicar el modelo de IA a nuevos conjuntos de datos.
Enlaces relacionados:
NIH
Últimas Inmunología noticias
- Análisis de sangre podría orientar decisiones futuras sobre tratamiento del cáncer
- Prueba de líquido cefalorraquídeo predice efecto secundario peligroso del tratamiento del cáncer
- Nueva prueba mide inmunidad de bebés prematuros usando sólo dos gotas de sangre
- Simple análisis de sangre ayudaría a elegir mejores tratamientos para pacientes con cáncer de endometrio recurrente
- Nuevo método analítico rastrea progresión de enfermedades autoinmunes
- Modelo de cáncer gástrico bioimpreso en 3D utiliza tejido del paciente para predecir respuesta a fármacos
- Análisis para detectar infecciones fúngicas podría acabar con biopsias de tejido
- Tecnología de microscopía permite terapias reumatológicas personalizadas
- Nuevo descubrimiento en células inmunes de la sangre abre camino a prueba diagnóstica para Parkinson
- Herramienta de IA utiliza análisis de sangre rutinario para predecir respuesta a inmunoterapia en cáncer
- Análisis de sangre puede predecir tiempo de inmunidad a la vacuna
- Dispositivo basado en chip microfluídico mide inmunidad viral
- Simple análisis sanguíneo podría detectar resistencia a fármacos en cáncer de ovario
- Método de imágenes mapea conexiones entre células inmunes para predecir supervivencia de pacientes con cáncer
- Herramienta computacional predice resultados de inmunoterapia en cáncer de mama metastásico
- Biomarcador podría predecir respuesta a inmunoterapia en cáncer de hígado
Canales
Química Clínica
ver canal
Nanotubos de carbono ayudan a construir sensores precisos para monitoreo continuo de la salud
Los sensores actuales pueden medir diversos indicadores de salud, como los niveles de glucosa en sangre. Sin embargo, es necesario desarrollar materiales para sensores más precisos y sensibles que... Más
Dispositivo basado en papel mejora la precisión de prueba del VIH
En las regiones donde el acceso a las clínicas para realizar análisis de sangre rutinarios presenta obstáculos financieros y logísticos, los pacientes con VIH pueden recolectar... MásDiagnóstico Molecular
ver canal
Prueba de dímero D puede identificar pacientes con mayor riesgo de embolia pulmonar
La embolia pulmonar (EP) es una afección que se sospecha con frecuencia en los servicios de urgencias (SU) y puede ser potencialmente mortal si no se diagnostica correctamente. Lograr un diagnóstico... Más
Nuevos biomarcadores mejoran la detección temprana y seguimiento de la lesión renal
La lesión renal inducida por fármacos, también conocida como nefrotoxicidad, es un problema frecuente en la práctica clínica, que se produce cuando medicamentos espe... Más
Inmunoensayos de quimioluminiscencia respaldan diagnóstico de Alzheimer
Se requieren inmunoensayos robustos para la cuantificación de biomarcadores específicos en la enfermedad de Alzheimer (EA) para el diagnóstico de rutina. La medición de los... Más
Análisis de sangre identifica múltiples biomarcadores para diagnóstico rápido de lesiones de médula espinal
Los Institutos Nacionales de Salud estiman que 18.000 personas en Estados Unidos sufren lesiones de la médula espinal (LME) anualmente, lo que resulta en una asombrosa carga financiera de más de 9.... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásMicrobiología
ver canal
Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas
La identificación rápida y precisa de microbios patógenos en muestras de pacientes es esencial para el tratamiento eficaz de enfermedades infecciosas agudas, como la sepsis.... MásSistema de identificación y PSA ayuda a diagnosticar enfermedades infecciosas y combatir RAM
Cada año, 11 millones de personas en todo el mundo mueren de sepsis, de las cuales 1,3 millones se deben a bacterias resistentes a los antibióticos. La resistencia a los antimicrobianos (RAM)... MásPatología
ver canal
Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
Cada año en Estados Unidos, se diagnostican alrededor de 81.000 nuevos casos de cáncer de vejiga, lo que provoca aproximadamente 17.000 muertes al año. El cáncer de vejiga ... Más
Nuevo método basado en láser acelera diagnóstico del cáncer
Investigadores han desarrollado un método para mejorar el diagnóstico del cáncer y otras enfermedades. El colágeno, una proteína estructural clave, desempeña diversas funciones en la actividad celular.... Más
Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
En los últimos años, la inteligencia artificial (IA) ha mejorado considerablemente nuestra capacidad para identificar un gran número de variantes genéticas en poblaciones cada... Más
Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
La enfermedad celíaca es un trastorno autoinmune desencadenado por el consumo de gluten, que causa síntomas como calambres estomacales, diarrea, erupciones cutáneas, pérdida de peso, fatiga y anemia.... MásTecnología
ver canal
Teléfonos inteligentes podrían diagnosticar enfermedades mediante escáneres infrarrojos
Los rápidos avances tecnológicos pronto permitirán que las personas eviten procedimientos médicos invasivos simplemente subiendo una captura de pantalla de sus resultados de... Más
Nueva tecnología de sensores permite diagnóstico temprano de trastornos metabólicos y cardiovasculares
Los metabolitos son compuestos cruciales que impulsan las funciones vitales, desempeñando un papel clave en la producción de energía, la regulación de la actividad celular y... MásIndustria
ver canal
Tecan adquiere activos de inmunoensayo ELISA de Cisbio Bioassays de Revvity
Tecan Group (Männedorf, Suiza) ha firmado un acuerdo para adquirir ciertos activos relacionados con productos clave de inmunoensayo ELISA de Cisbio Bioassays SAS (Codolet, Francia), filial de Revvity Inc.... Más