Inteligencia artificial detecta células tumorales viables para pronósticos precisos de cáncer de hueso después de quimioterapia
Por el equipo editorial de LabMedica en español Actualizado el 03 May 2024 |

El osteosarcoma, el tumor óseo maligno más común, ha mostrado tasas de supervivencia mejoradas con cirugía y quimioterapia para casos localizados. Sin embargo, el pronóstico del osteosarcoma metastásico avanzado sigue siendo desalentador. Los métodos tradicionales de pronóstico posterior al tratamiento, basados en la evaluación de la necrosis o la evaluación de la proporción de tejido muerto dentro del tumor, sufren de variabilidad entre observadores y podrían no predecir con precisión la respuesta al tratamiento. Ahora los investigadores han desarrollado y validado un modelo de aprendizaje automático capaz de evaluar con precisión la densidad de células tumorales supervivientes en imágenes patológicas de osteosarcoma, ofreciendo una predicción de pronóstico más fiable.
El modelo, desarrollado por investigadores de la Universidad de Kyushu (Fukuoka, Japón), utiliza algoritmos de aprendizaje profundo para identificar células tumorales viables dentro de imágenes patológicas, coincidiendo con las habilidades de evaluación de patólogos expertos. Este enfoque supera las limitaciones del método tradicional para la evaluación de la tasa de necrosis, que calcula el área necrótica sin considerar el recuento de células individuales, lo que genera evaluaciones inconsistentes entre patólogos y una reflexión inadecuada de los efectos de la quimioterapia. En la fase 1 del estudio, el equipo entrenó el modelo de aprendizaje profundo para detectar células tumorales supervivientes y validó su rendimiento utilizando datos de pacientes. El modelo de IA fue tan competente en la detección de células tumorales viables en imágenes patológicas como los patólogos expertos.
En la fase 2, los investigadores se centraron en la supervivencia específica de la enfermedad y la supervivencia libre de metástasis. Mientras que la supervivencia específica de la enfermedad rastrea la duración después del diagnóstico o tratamiento sin muerte causada directamente por la enfermedad, la supervivencia libre de metástasis monitorea el tiempo posterior al tratamiento sin que las células cancerosas se propaguen a partes distantes del cuerpo. También examinaron la correlación entre la densidad de células tumorales viables estimada por IA y el pronóstico. Los hallazgos revelaron que el rendimiento de detección y la precisión del modelo de IA eran comparables a los del patólogo, además de una buena reproducibilidad. Luego, el equipo dividió a los pacientes en grupos según si la densidad de células tumorales viables era superior o inferior a 400/mm2. Descubrieron que una mayor densidad se correlacionaba con un peor pronóstico, mientras que una menor densidad indicaba un mejor resultado.
El equipo descubrió que la tasa de necrosis no se asociaba con la supervivencia específica de la enfermedad ni con la supervivencia libre de metástasis. Un análisis más detallado de casos individuales mostró que la densidad de células tumorales viables estimada por IA es un predictor de pronóstico más confiable que la tasa de necrosis. Estos hallazgos sugieren que al incorporar IA en el análisis de imágenes patológicas, este método mejora la precisión de la detección, minimiza la variabilidad entre los evaluadores y ofrece evaluaciones rápidas. La estimación de la densidad de células tumorales viables, que indica el potencial de proliferación de las células después de la quimioterapia, surge como un indicador superior de la eficacia del tratamiento sobre la evaluación tradicional de la tasa de necrosis. Este modelo de IA promete avances significativos en entornos clínicos después de una validación más amplia para facilitar su aplicación generalizada.
"Este nuevo enfoque tiene el potencial de mejorar la precisión del pronóstico de los pacientes con osteosarcoma tratados con quimioterapia", afirmó el Dr. Makoto Endo, profesor de Cirugía Ortopédica en el Hospital Universitario de Kyushu. “En el futuro, pretendemos aplicar activamente la IA a enfermedades raras como el osteosarcoma, que han experimentado avances limitados en epidemiología, patogénesis y etiología. A pesar del paso de las décadas, particularmente en las estrategias de tratamiento, sigue siendo difícil lograr avances sustanciales. Al aplicar la IA al problema, esto finalmente podría cambiar”.
Enlaces relacionados:
Universidad de Kyushu
Últimas Patología noticias
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
- Herramienta de IA pionera visualiza la "red social" de las células para tratar el cáncer
- Prueba diagnostica tumores cerebrales infantiles de alto riesgo
- Dispositivo microfluídico evalúa adherencia de células tumorales para predecir propagación del cáncer
- Nueva herramienta de IA mejora métodos anteriores para identificar cáncer colorrectal en muestras de tejido
- Técnica predice tumores agresivos antes de que hagan metástasis
- Técnica de imágenes inspirada en alas de mariposa permite diagnóstico rápido del cáncer
Canales
Química Clínica
ver canal
Nanotubos de carbono ayudan a construir sensores precisos para monitoreo continuo de la salud
Los sensores actuales pueden medir diversos indicadores de salud, como los niveles de glucosa en sangre. Sin embargo, es necesario desarrollar materiales para sensores más precisos y sensibles que... Más
Dispositivo basado en papel mejora la precisión de prueba del VIH
En las regiones donde el acceso a las clínicas para realizar análisis de sangre rutinarios presenta obstáculos financieros y logísticos, los pacientes con VIH pueden recolectar... MásDiagnóstico Molecular
ver canal
Novedosa tecnología en POC ofrece resultados precisos del VIH en minutos
Los métodos de diagnóstico del VIH se han basado tradicionalmente en la detección de anticuerpos específicos del VIH, que suelen aparecer semanas después de la infección.... Más
Análisis de sangre descarta riesgo futuro de demencia
Estudios previos han sugerido que biomarcadores específicos, como tau217, neurofilamento ligero (NfL) y proteína ácida fibrilar glial (GFAP), podrían ser valiosos para el d... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... Más
Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas
La identificación rápida y precisa de microbios patógenos en muestras de pacientes es esencial para el tratamiento eficaz de enfermedades infecciosas agudas, como la sepsis.... MásTecnología
ver canal
Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
Los virus representan un importante riesgo para la salud mundial, como lo demuestran las recientes pandemias, lo que hace que la detección e identificación tempranas sean esenciales para... Más
Teléfonos inteligentes podrían diagnosticar enfermedades mediante escáneres infrarrojos
Los rápidos avances tecnológicos pronto permitirán que las personas eviten procedimientos médicos invasivos simplemente subiendo una captura de pantalla de sus resultados de... MásIndustria
ver canal
Grifols e IBL de Tecan colaboran en paneles de biomarcadores avanzados
Grifols (Barcelona, España), uno de los principales productores mundiales de medicamentos derivados del plasma y soluciones de diagnóstico innovadoras, está ampliando su oferta en... Más