Modelo de IA muestra con precisión la presencia y ubicación del cáncer en imágenes patológicas
Por el equipo editorial de LabMedica en español Actualizado el 17 Aug 2022 |

Por lo general, es necesario marcar con precisión la ubicación del sitio del cáncer en imágenes patológicas para resolver los problemas relacionados con la zonificación que indica la información de ubicación del cáncer, lo que lleva mucho tiempo y, por lo tanto, aumenta el costo. Los modelos de aprendizaje profundo existentes necesitan construir un conjunto de datos, en el que se dibujó con precisión la ubicación del cáncer, para especificar el sitio del cáncer. Ahora, los investigadores han desarrollado un modelo de aprendizaje profundo supervisado débilmente que puede mostrar con precisión la presencia y la ubicación del cáncer en imágenes patológicas basadas solo en datos donde el cáncer está presente. El modelo de aprendizaje profundo mejora la eficiencia y se espera que haga una contribución importante al campo de investigación relevante.
Los científicos del Instituto de Ciencia y Tecnología Daegu Gyeongbuk (DGIST, Daegu, Corea) desarrollaron el modelo de aprendizaje débilmente supervisado que zonifica los sitios de cáncer con solo datos aproximados como "si el cáncer en la imagen está presente o no" está bajo estudio activo. Sin embargo, habría un deterioro significativo en el rendimiento si el modelo de aprendizaje débilmente supervisado existente se aplicara a un gran conjunto de datos de imágenes patológicas donde el tamaño de una imagen es tan grande como unos pocos gigabytes. Para resolver este problema, los investigadores intentaron mejorar el rendimiento dividiendo la imagen patológica en parches, aunque los parches divididos pierden la correlación entre la información de ubicación y cada dato dividido, lo que significa que hay un límite para usar toda la información disponible.
En respuesta, el equipo de investigación descubrió una técnica de segmentación hacia el sitio del cáncer basada únicamente en los datos aprendidos que indican la presencia de cáncer por diapositiva. El equipo desarrolló una tecnología de compresión de imágenes patológicas que primero le enseña a la red a extraer efectivamente características significativas de los parches a través del aprendizaje contrastivo no supervisado y lo utiliza para detectar las características principales mientras mantiene la información de cada ubicación para reducir el tamaño de la imagen y mantener la correlación entre los parches. Más tarde, el equipo desarrolló un modelo que puede encontrar la región que es muy probable que tenga cáncer de las imágenes patológicas comprimidas usando un mapa de activación de clase y ubicar todas las regiones con alta probabilidad de que tengan cáncer de las imágenes patológicas completas usando un módulo de correlación de píxeles (PCM). El modelo de aprendizaje profundo recientemente desarrollado mostró una puntuación de coeficiente de similitud de dados (DSC) de hasta 81-84 solo con los datos de aprendizaje con etiquetas de cáncer a nivel de diapositiva en el problema de zonificación del cáncer. Superó significativamente el rendimiento de los métodos de nivel de parche propuestos anteriormente u otras técnicas de aprendizaje supervisadas débilmente (puntuación DSC: 20 - 70).
“El modelo desarrollado a través de este estudio ha mejorado en gran medida el rendimiento del aprendizaje débilmente supervisado de imágenes patológicas, y se espera que contribuya a mejorar la eficiencia de varios estudios que requieren análisis de imágenes patológicas”, dijo el profesor Park Sang-Hyun del Departamento de Ingeniería Robótica y Mecatrónica en DGIST. "Si podemos mejorar aún más la tecnología relacionada en el futuro, será posible usarla universalmente para varios problemas de zonificación de imágenes médicas".
Enlaces relacionados:
DGIST
Últimas Patología noticias
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
- Herramienta de IA pionera visualiza la "red social" de las células para tratar el cáncer
- Prueba diagnostica tumores cerebrales infantiles de alto riesgo
- Dispositivo microfluídico evalúa adherencia de células tumorales para predecir propagación del cáncer
- Nueva herramienta de IA mejora métodos anteriores para identificar cáncer colorrectal en muestras de tejido
- Técnica predice tumores agresivos antes de que hagan metástasis
- Técnica de imágenes inspirada en alas de mariposa permite diagnóstico rápido del cáncer
Canales
Química Clínica
ver canal
Nanotubos de carbono ayudan a construir sensores precisos para monitoreo continuo de la salud
Los sensores actuales pueden medir diversos indicadores de salud, como los niveles de glucosa en sangre. Sin embargo, es necesario desarrollar materiales para sensores más precisos y sensibles que... Más
Dispositivo basado en papel mejora la precisión de prueba del VIH
En las regiones donde el acceso a las clínicas para realizar análisis de sangre rutinarios presenta obstáculos financieros y logísticos, los pacientes con VIH pueden recolectar... MásDiagnóstico Molecular
ver canal
Novedosa tecnología en POC ofrece resultados precisos del VIH en minutos
Los métodos de diagnóstico del VIH se han basado tradicionalmente en la detección de anticuerpos específicos del VIH, que suelen aparecer semanas después de la infección.... Más
Análisis de sangre descarta riesgo futuro de demencia
Estudios previos han sugerido que biomarcadores específicos, como tau217, neurofilamento ligero (NfL) y proteína ácida fibrilar glial (GFAP), podrían ser valiosos para el d... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... Más
Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas
La identificación rápida y precisa de microbios patógenos en muestras de pacientes es esencial para el tratamiento eficaz de enfermedades infecciosas agudas, como la sepsis.... MásTecnología
ver canal
Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
Los virus representan un importante riesgo para la salud mundial, como lo demuestran las recientes pandemias, lo que hace que la detección e identificación tempranas sean esenciales para... Más
Teléfonos inteligentes podrían diagnosticar enfermedades mediante escáneres infrarrojos
Los rápidos avances tecnológicos pronto permitirán que las personas eviten procedimientos médicos invasivos simplemente subiendo una captura de pantalla de sus resultados de... MásIndustria
ver canal
Grifols e IBL de Tecan colaboran en paneles de biomarcadores avanzados
Grifols (Barcelona, España), uno de los principales productores mundiales de medicamentos derivados del plasma y soluciones de diagnóstico innovadoras, está ampliando su oferta en... Más