Datos del microbioma intestinal ayudan en la detección rutinaria de la enfermedad cardiovascular
Por el equipo editorial de LabMedica en español Actualizado el 21 Sep 2020 |

Imagen: Los datos del microbioma intestinal ayudan a la detección de rutina de enfermedades cardiovasculares (Fotografía cortesía de Nishant Mehta PhD).
Además de los factores genéticos y ambientales, la microbiota intestinal ha surgido como un nuevo factor que influye en las enfermedades cardiovasculares (ECV). Aunque las relaciones causa-efecto no están claramente establecidas, las asociaciones reportadas entre las alteraciones en la microbiota intestinal y la ECV son prominentes.
Estudios recientes han encontrado un vínculo entre la microbiota intestinal, los microorganismos en el tracto digestivo humano, y la ECV, que es la principal causa de mortalidad en todo el mundo. La microbiota intestinal es muy variable entre individuos y se han informado diferencias en la composición microbiana intestinal entre personas con y sin ECV.
Científicos de la Universidad de Toledo (Toledo, OH, EUA) plantearon la hipótesis de que se podría usar el aprendizaje automático (AA) para el cribado de diagnóstico de la ECV con base en el microbioma Intestinal. Para probar su hipótesis, se analizaron los datos de secuenciación del ARN ribosómico 16S fecal de 478 sujetos humanos con ECV y 473 sin ECV recopilados a través del Proyecto Intestinal Americano utilizando cinco algoritmos de AA supervisados, que incluyen bosque aleatorio, máquina de vectores de apoyo, árbol de decisión, red elástica y redes neuronales.
El equipo identificó 39 taxones bacterianos diferenciales entre los grupos con ECV y sin ECV. El modelado de AA utilizando estas características taxonómicas logró un área de prueba bajo la curva de características operativas del receptor (0,0, antidiscriminación perfecta; 0,5, adivinación aleatoria; 1,0, discriminación perfecta) de ≈0,58 (bosque aleatorio y redes neuronales). A continuación, se entrenaron los modelos de AA con las 500 características principales de alta varianza de las unidades taxonómicas operativas, en lugar de taxones bacterianos, y se logró un área de prueba mejorada bajo las curvas de características operativas del receptor de ≈0,65 (bosque aleatorio).
Además, al limitar la selección a solo las 25 características de la unidad taxonómica operativa de mayor contribución, el área bajo las curvas de características operativas del receptor se mejoró significativamente a ≈0,70. Entre las bacterias identificadas se encuentran Bacteroides, Subdoligranulum, Clostridium, Megasphaera, Eubacterium, Veillonella, Acidaminococcus y Listeria, que fueron más abundantes en el grupo de ECV. Faecalibacterium, Ruminococcus, Proteus, Lachnospira, Brevundimonas, Alistipes y Neisseria fueron más abundantes en el grupo sin ECV.
Bina Joe, PhD, FAHA, profesora universitaria distinguida y presidente del departamento de fisiología y farmacología, dijo: “A pesar de que los microbiomas intestinales son muy variables entre los individuos, nos sorprendió el nivel de exactitud prometedora obtenida a partir de estos resultados preliminares que indican que la composición de la microbiota fecal podría servir, potencialmente, como un método de detección diagnóstica conveniente para las ECV”.
Los autores concluyeron que, en general, el estudio fue el primero en identificar la disbiosis de la microbiota intestinal en pacientes con ECV como grupo y aplicar este conocimiento para desarrollar un enfoque de AA, basado en el microbioma intestinal, para el cribado diagnóstico de la ECV. El estudio fue publicado el 10 de septiembre de 2020 en la revista Hypertension.
Enlace relacionado:
Universidad de Toledo
Estudios recientes han encontrado un vínculo entre la microbiota intestinal, los microorganismos en el tracto digestivo humano, y la ECV, que es la principal causa de mortalidad en todo el mundo. La microbiota intestinal es muy variable entre individuos y se han informado diferencias en la composición microbiana intestinal entre personas con y sin ECV.
Científicos de la Universidad de Toledo (Toledo, OH, EUA) plantearon la hipótesis de que se podría usar el aprendizaje automático (AA) para el cribado de diagnóstico de la ECV con base en el microbioma Intestinal. Para probar su hipótesis, se analizaron los datos de secuenciación del ARN ribosómico 16S fecal de 478 sujetos humanos con ECV y 473 sin ECV recopilados a través del Proyecto Intestinal Americano utilizando cinco algoritmos de AA supervisados, que incluyen bosque aleatorio, máquina de vectores de apoyo, árbol de decisión, red elástica y redes neuronales.
El equipo identificó 39 taxones bacterianos diferenciales entre los grupos con ECV y sin ECV. El modelado de AA utilizando estas características taxonómicas logró un área de prueba bajo la curva de características operativas del receptor (0,0, antidiscriminación perfecta; 0,5, adivinación aleatoria; 1,0, discriminación perfecta) de ≈0,58 (bosque aleatorio y redes neuronales). A continuación, se entrenaron los modelos de AA con las 500 características principales de alta varianza de las unidades taxonómicas operativas, en lugar de taxones bacterianos, y se logró un área de prueba mejorada bajo las curvas de características operativas del receptor de ≈0,65 (bosque aleatorio).
Además, al limitar la selección a solo las 25 características de la unidad taxonómica operativa de mayor contribución, el área bajo las curvas de características operativas del receptor se mejoró significativamente a ≈0,70. Entre las bacterias identificadas se encuentran Bacteroides, Subdoligranulum, Clostridium, Megasphaera, Eubacterium, Veillonella, Acidaminococcus y Listeria, que fueron más abundantes en el grupo de ECV. Faecalibacterium, Ruminococcus, Proteus, Lachnospira, Brevundimonas, Alistipes y Neisseria fueron más abundantes en el grupo sin ECV.
Bina Joe, PhD, FAHA, profesora universitaria distinguida y presidente del departamento de fisiología y farmacología, dijo: “A pesar de que los microbiomas intestinales son muy variables entre los individuos, nos sorprendió el nivel de exactitud prometedora obtenida a partir de estos resultados preliminares que indican que la composición de la microbiota fecal podría servir, potencialmente, como un método de detección diagnóstica conveniente para las ECV”.
Los autores concluyeron que, en general, el estudio fue el primero en identificar la disbiosis de la microbiota intestinal en pacientes con ECV como grupo y aplicar este conocimiento para desarrollar un enfoque de AA, basado en el microbioma intestinal, para el cribado diagnóstico de la ECV. El estudio fue publicado el 10 de septiembre de 2020 en la revista Hypertension.
Enlace relacionado:
Universidad de Toledo
Últimas Patología noticias
- Innovador algoritmo de triaje del dolor torácico transforma la atención cardíaca
- Enfoque de biopsia líquida basado en IA revolucionará detección del cáncer cerebral
- Análisis de imágenes de patología digital con IA mejora subtipificación del sarcoma pediátrico
- Modelo de IA predice respuesta a terapia contra cáncer de riñón
- Kits de ensayo de enzima DUB sensibles y específicos requieren configuración mínima sin preparación del sustrato
- Primer modelo de IA para diagnóstico de cáncer de tiroides con precisión superior al 90 %
- Enfoque diagnóstico innovador mejora significativamente la detección de tuberculosis
- Método de detección rápido, ultrasensible y sin PCR hace el análisis genético más accesible
- Prueba de saliva más precisa para identificar riesgo de cáncer de próstata
- Nanotecnología del ADN aumenta sensibilidad de tiras reactivas
- Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
- Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
- Algoritmo "detector de metales" consigue tumores vulnerables
- Nueva técnica identifica y clasifica subtipos de células de cáncer de páncreas
- Imágenes avanzadas revelan mecanismos que causan enfermedades autoinmunes
- Modelo de IA predice eficazmente resultados de pacientes con cáncer de pulmón
Canales
Química Clínica
ver canal
Análisis de sangre con IA detecta cáncer de ovario
El cáncer de ovario se ubica como la quinta causa principal de muerte por cáncer en mujeres, debido principalmente a diagnósticos en etapas tardías. Si bien más del 90... Más
Ensayo automatizado y descentralizado de NGS deADNlc identifica alteraciones en tumores sólidos avanzados
Los análisis actuales de ADN libre circulante (ADNlc) suelen estar centralizados, lo que requiere un manejo y transporte especializados de las muestras. La introducción de un sistema de ... MásDiagnóstico Molecular
ver canal
Innovadora prueba de diagnóstico molecular señala con precisión principal causa genética de EPOC
La enfermedad pulmonar obstructiva crónica (EPOC) y la deficiencia de alfa-1 antitripsina (DAAT) son afecciones que pueden causar dificultades respiratorias, pero difieren en su origen y herencia.... Más
Prueba diagnóstica de sangre detecta espondiloartritis axial
La espondiloartritis axial (EspAax) es una enfermedad autoinmune inflamatoria crónica que suele afectar a las personas durante sus años más productivos, y cuyos síntomas suelen manifestarse antes de los 45 años.... MásHematología
ver canal
Primera prueba de monitorización de heparina POC proporciona resultados rápidos
La dosificación de heparina requiere un manejo cuidadoso para evitar complicaciones hemorrágicas y de coagulación. En situaciones de alto riesgo, como la oxigenación por membrana... Más
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásPatología
ver canal
Innovador algoritmo de triaje del dolor torácico transforma la atención cardíaca
Las enfermedades cardiovasculares son responsables de un tercio de las muertes en todo el mundo, y el dolor torácico es la segunda causa más común de visitas a urgencias.... Más
Enfoque de biopsia líquida basado en IA revolucionará detección del cáncer cerebral
Detectar cánceres cerebrales sigue siendo extremadamente difícil, ya que muchos pacientes solo reciben un diagnóstico en etapas avanzadas, tras la aparición de síntomas... MásTecnología
ver canal
Algoritmos predictivos avanzados identifican pacientes con cáncer no diagnosticado
Dos algoritmos predictivos avanzados recientemente desarrollados aprovechan el estado de salud de una persona y los resultados de análisis de sangre básicos para predecir con precisión... Más
Algoritmo de firma de luz permite diagnósticos médicos más rápidos y precisos
Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más